跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/24 18:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐皓馨
論文名稱:影響股票報酬率波動因素之研究-以24國為例
論文名稱(外文):Factors Affecting Stock Return Volatility- - International Evidences from Twenty-Four Countries
指導教授:洪志洋洪志洋引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:科技管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:43
中文關鍵詞:波動性GARCH (11)模型交易量日內價格波動性日內波動
外文關鍵詞:volatilityGARCH (11) modeltrading volumeintraday high-low range volatilityintra-day volatility (IDV)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
股票市場波動性(volatility)在資產評價、投資組合的管理及動態避險等方面,均扮演極重要的角色。

過去探討股市波動性的文獻中,大部分皆探討單一因子對單一國家股市波動性的影響,較少探討這些因子對不同國家影響性。且大部分文獻皆探討單一因子在不同的模型中所產生的影響,較少學者探討單一模型中放入不同因子所產生的影響。因此本文以GARCH (1,1)模型為主,分別加入三個不同因子,例如:交易量(trading volume)、日內價格波動性(high-low range volatility)與日內波動(intra-day volatility, IDV),以探討這些因子對各國主要股價指數報酬率波動的影響。本研究更進一步將樣本期間區分為樣本內資料與樣本外資料,比較此模型加入不同變數後的預測效率 (forecast efficiency)。本研究以全球共24個國家為主要研究對象,並將國家分為開發中國家及已開發國家進行探討。

本研究主要有兩項發現:首先,交易量、日內價格波動性及日內波動對於開發中國家主要股價指數報酬率波動性的影響程度大於已開發國家。並發現各個因子的預測效率對各個國家而言並沒有明顯的差異。

While the stock volatility has been extensively investigated, the transnational research is relatively unexplored. This paper studies influences on stock return volatility after entering trading volume, intraday high-low range volatility and intra-day volatility (IDV) in GARCH (1,1) model. Moreover, the study compares the forecasting efficiency across the four models by using out-of-sample data. Using stock indexes from the 24 countries as an example, the period is from January 1, 2007 to December 31, 2011. Furthermore, the data of this study are categorized into the two groups, the developed and developing countries, in order to ascertain differences between them. The first finding suggests that the three variables make a greater impact on the stock return volatility in the developing countries in comparison with the developed countries. The second finding suggests that the forecasting efficiency for GARCH (1,1) model entering trading volume, intraday high-low range volatility, intra-day volatility (IDV) and without variables are similar across the 22 countries. The forecasting efficiency of GARCH (1,1) model with trading volume is slightly better than the other models among the 22 countries. However, there are no significant differences among the 4 models.
Chapter 1 Introduction---------------------------------------------1
Chapter 2 Literature review
2.1. GARCH-family---------------------------------------------5
2.2. High-low range volatility--------------------------------6
2.3. Research for price-volume relationship-------------------7
2.4. Intra-day volatility, IDV--------------------------------9
2.5. Volatility persistence----------------------------------10
2.6. Stock return volatility---------------------------------11
Chapter 3 Method
3.1. GARCH (1,1) model---------------------------------------12
3.2. Forecasting evaluation----------------------------------15
Chapter 4 Data and empirical results
4.1. Data Source---------------------------------------------17
4.2. Empirical results
4.2.1. Estimation of the models by in-sample data---------18
4.2.2. Out-of-sample forecasting evaluation---------------28
Chapter 5 Conclusion----------------------------------------------38
References--------------------------------------------------------39
Appendix----------------------------------------------------------43

Alsubaie, A., & Najand, M. (2009). Trading volume, time-varying conditional volatility, and asymmetric volatility spillover in the Saudi stock market. Journal of Multinational Financial Management, 19(2), 139-159.
Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity.Journal of Econometrics, 31, 307-327.
Brailsford, T. J. (1996). The empirical relationship between trading volume, returns and volatility. Accounting and Finance, 35(1), 89-111.
Beltratti, A., & Morana, C. (2006). Breaks and persistency: macroeconomic causes of stock market volatility. Journal of Econometrics, 131, 151-177.
Bekaert, G., & Harvey, C. R. (1997). Emerging equity market volatility. Journal of Financial Economics, 43, 29-78.
Bohl, M. T., & Henke, H. (2003). Trading volume and stock market volatility: The Polish case. International Review of Financial Analysis, 12(5), 513-525.
Bollerslev, T., Chou, R., & Kroner, K. (1992). Arch modeling in finance: A review of the theory and empirical evidence. Journal of Econometrics, 52, 5-59.
Bollerslev, T., Engle, R. F., & Nelson, D. B. (1994). ARCH models. In Handbook of Econometrics, IV, 2995-3038.
Christie, A. A. (1982). The stochastic behavior of common stock variances: Value, leverage and interest rate effects. Journal of Financial Economics, 10(4), 407-432.
Connor, G.,& Linton, O. (2001). The common and specific components of dynamic volatility, Mimeo, London School of Economics and Political Science.
Campbell, J. Y. (1987). Stock Returns and the Term Structure. Journal of Financial Economics, 18, 373-399.
Clark, P. (1973). A subordinated stochastic process model with finite variance for speculative prices. Econometrica, 41, 135–155.
Copeland, T. (1976). A model of asset trading under the assumption of sequential information arrival. Journal of Finance, XXXI, 1149–1168.
Corrado, C.,&Truong, C. (2007). Forecasting stock index volatility: comparing implied volatility and the intraday high-low price range. The Journal of Financial Research, 30(2), 201–215.
Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987-1007.
Epps, T. W., & Epps, M. L. (1976). The stochastic dependence of security price changes and transaction volumes: Implication for the mixture-of-distributions hypothesis. Econometrica, 44, 305–321.
Fortune, P. (1989). An assessment of financial market volatility: bills, bonds, and stocks. New England Economic Review, 13-28.
Granger, C. W. J., &Morgenstern, O. (1963). Spectral analysis of New York stock market prices. Kyklos, XVI, 1–27.
Gallo, G. M., Pacini, B. (2000). The effects of trading activity on market volatility.European Journal of Finance, 6, 163-175.
Harris, L. (1987). Transaction Date Tests of the Mixture of Distribution Hypothesis. Journal of Financial and Quantitative Analysis, 22, 127–141.
Hung, C.H., Tzang, S.W., & Shyu, S. D. (2009). Forecasting Efficiency of Implied Volatility and the Intraday High-Low Price Range in Taiwan Stock Market. International Research Journal of Finance and Economics, 27, 192-202.
International Monetary Fund. World Economic Outlook, September 2011.
Lamoureux, C. G., & Lastrapes,W.D. (1990a). Heteroskedasticity in stock return data: volume versus GARCH effects. Journal of Finance, 45, 221-229.
Laux, P.A., & Ng, L.K. (1993). The sources of GARCH: empirical evidence from an intraday returns model incorporating systematic and unique risks. Journal of International Money and Finance, 12, 543–560.
Najand, M., & Yung, K. (1991). A GARCH Examination of the Relationship
between Volume and Variability in Futures Markets. The Journal of Futures Markets, 11, 613–621.
Parkinson, M. (1980). The Extreme Value Method for Estimating the Variance of the Rate of Return. The Journal of Business, 53(1), 61-65.
Phylaktis, K., & Xia, L. (2006). Sources of firms’ industry and country effects in emerging markets. Journal of international Money and Finance, 25, 459-475.
Pyuna, C., Lee, S., & Nam, K. (2000). Volatility and information flows in emerging equity market: a case of the korean stock exchange. International Review of FinancialAnalysis, 9, 405–420.
Schwert, G.W. (1989). Business Cycles, Financial Crises, and Stock Volatility. Carnegie Rochester Conference Series on Public Policy, 31, 83-126.
Spiro, P. S. (1990). The impact of interest rate changes on stock price volatility. The Journal of Portfolio Management, 16(2), 63-68.
Saatcioglu, K.,& Starks, L. T. (1998). The Stock Price-Volume Relationship in Emerging Stock Markets. International Journal of Forecasting, 14, 215-225.
Taylor, S.J. (1987). Forecasting the volatility of currency exchange rates. International Journal of Forecasting, 3, 159–170.
Taylor, S.J., Xu, X. (1997). The incremental volatility information in one million foreign exchange quotations. Journal of Empirical Finance, 4, 317–340.
Ying, C. (1966). Stock market prices and volumes of sales. Econometrica, 34, 676–685.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊