跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/28 00:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾宇晟
研究生(外文):Tseng, Yu-Cheng
論文名稱:適用於高畫質立體電視應用之視差估測設計研究
論文名稱(外文):The Study of Disparity Estimation Design for High Definition 3DTV Applications
指導教授:張添烜
指導教授(外文):Chang, Tian-Sheuan
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:214
中文關鍵詞:視差估測立體電視超大型積體電路設計
外文關鍵詞:Disparity estimation3DTVVLSI design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:713
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
隨著立體電視的問世,人們可以藉由立體視訊獲得新的視覺經驗。立體視訊可以立體攝影機擷取,並經由影像處理技術運算後,可支援多視角與自由視點之立體電視應用。在立體視訊的處理中,視差估測為最重要的技術之一。視差估測可產生拍攝場景之視差圖,可用於虛擬視角視訊的合成。動態影像壓縮標準組織的立體視訊編碼團隊已提出目前最先進視差估測演算法。其演算法可針對立體電視的應用產生高品質的視差圖,但因採用圖形切割演算法導致高運算複雜度與低平行運算的問題。特別對於高畫質視訊,其問題更為嚴重。
為解決以上問題,本論文首先提出初階視差估測演算法,採用訊息傳遞演算法以提高視差估測的運算平行度,並搭配聯合雙邊上取樣演算法以減少運算的畫面大小。其硬體設計面臨之問題,可藉由所提出之硬體架構方法解決。以此初階演算法為基礎,我們進一步提出一高品質視差估測演算法,可改善時間軸一致性與遮蔽之問題,並產生高品質的視差圖。針對高品質視差演算法,我們提出適用於不同實作方法的二快速視差估測演算法。針對軟體程式設計,所提出的稀疏運算之快速演算法可藉由時間軸與空間軸的分析選擇稀疏像素,僅針對稀疏像素更新視差值,達到降低運算時間至62.9%。另一方面,針對超大型積體電路設計,所提出的高硬體效率之快速演算利用新的比對資訊擴散方法可降低運算時間至57.2%,並大幅降低原演算的記憶體成本至0.00029%。客觀評比的結果顯示針對虛擬視角視訊合成之應用,我們所提出的演算法可達到近於現今最先進演算法的高品質。
最後,我們化簡高硬體效率之快速演算法,進而提出高輸出效能的架構設計。其硬體實作結果顯示所提出的視差估測引擎可支援視差範圍128,同時產生三視角HD1080p視差圖,並達到每秒95畫面的輸出速度,也就是每秒75.64G像素視差。總言之,本論文所提出的視差估測設計可滿足高畫質度立體電視應用的需求。

With emerging 3DTVs, human can have new visual experience from 3D videos that can be captured by new stereo camera and further processed by image processing techniques for the 3DTV applications of multi-view or free viewpoint. In the 3D video processing, one of the most important techniques is the disparity estimation that could generate disparity maps for synthesizing virtual-view videos. The state-of-the-art disparity estimation algorithm proposed by the MPEG 3D Video Coding team could deliver high-quality disparity maps, but suffers from high computational complexity and low parallelism due to its graph-cut algorithm, especially for high definition videos.
To address the problems, this dissertation first proposes the baseline disparity estimation algorithm that adopts the belief propagation algorithm to increase the parallelism of disparity estimation, and the joint bilateral upsampling algorithm to reduce the computational resolution. Their design challenges could be solved by our proposed architectural design methods. Based on the baseline algorithm, we further propose the high-quality algorithm that could well improve the temporal consistency and occlusion problems, and deliver high performance disparity maps. To accelerate the high-quality algorithm, we propose the two fast algorithms for different implementation method. The sparse-computation fast algorithm could decrease the processed pixels in the spatial and temporal domains to reduce the execution time to 62.9% for the software implementation. On the other hand, for the hardware implementation, we propose the hardware-efficient fast algorithm that could reduce the execution time of high-quality algorithm to 57.2%, and decrease the memory cost of belief propagation to 0.00029% by the proposed cost diffusion method. The objective evaluation results show that our disparity quality is similar to the quality of state-of-the-art algorithm for view synthesis applications.
Moreover, we further simplify the hardware-efficient algorithm and propose a high-throughput architectural design. The implementation results shows that the proposed disparity estimation engine could achieve the throughput of 95 frames/s for three view HD1080p disparity maps with 128 disparity levels (i.e. 75.64G pixel-disparities/s). It could satisfy the requirement of high definition 3DTV applications.

摘要 i
ABSTRACT iii
謝誌 v
List of Symbols xi
I Introduction 1
1.1 Background 1
1.2 Motivation 1
1.3 Contribution 2
1.4 Dissertation Organization 3
II Background 5
2.1 Disparity Estimation 5
2.1.1 Epipolar Geometry 5
2.1.2 General Algorithm Flow 7
2.2 View Synthesis 19
2.2.1 Warping 20
2.2.2 Blending 20
2.2.3 Hole Filling 21
2.3 Review of DERS Algorithm from 3DVC 22
2.3.1 Input and Output View Configuration 22
2.3.2 DERS Algorithm 23
2.3.3 Reference Software for 3-View Configuration 26
2.3.4 Evaluation Method for Disparity Quality 27
2.3.5 Design Challenges 31
2.4 Summary 33
III Baseline Disparity Estimation with Belief Propagation and Joint Bilateral Filter for High Definition 3DTV Applications 34
3.1 Introduction 34
3.1.1 Baseline Belief Propagation 34
3.1.2 Joint Bilateral Upsampling 36
3.2 Analysis and Design of Baseline Belief Propagation 38
3.2.1 Analysis of Belief Propagation 38
3.2.2 Proposed Low Memory Cost Access Approach 41
3.2.3 Proposed Efficient PE 50
3.2.4 Implementation Result 54
3.3 Analysis and Design of Joint Bilateral Filtering 58
3.3.1 Related Acceleration Approaches 58
3.3.2 Analysis of Integral Histogram Approach 62
3.3.3 Proposed Memory Reduction Methods 66
3.3.4 Proposed Architecture 69
3.3.5 Implementation Result 75
3.4 Baseline Disparity Estimation Algorithm 77
3.4.1 Baseline Algorithm 77
3.4.2 Comparison 79
3.5 Summary 84
IV Advanced Disparity Estimation Algorithms for High Definition 3DTV Applications 86
4.1 High-Quality Disparity Estimation Algorithm 86
4.1.1 Related Work 86
4.1.2 Observation in DERS and Baseline Algorithms 89
4.1.3 Proposed Algorithm Flow 91
4.1.4 Downsampled Disparity Estimation for Full Range Disparity 93
4.1.5 Joint Bilateral Upsampling 98
4.1.6 Occlusion Handling 99
4.1.7 Temporal Consistency Enhancement 102
4.2 Sparse-Computation Disparity Estimation Algorithm 106
4.2.1 Related Work 107
4.2.2 Proposed Algorithm Flow 107
4.2.3 Sparse Pixel Selection 111
4.2.4 Sparse-Computation Steps 115
4.2.5 Computational Reduction 116
4.3 Hardware-Efficient Disparity Estimation Algorithm 117
4.3.1 Design Challenges in High-Quality Algorithm 118
4.3.2 Proposed Algorithm Flow 121
4.3.3 Cost Diffusion Algorithm 122
4.3.4 Image Buffer Reduction Methods 126
4.3.5 Small Filter Window Size 127
4.3.6 Regular Occlusion Handling 128
4.3.7 Simple Region Detection 129
4.4 Summary 131
V Experimental Results 132
5.1 Experiment Setting 132
5.1.1 Test Sequences 132
5.1.2 Input and Output Configuration 134
5.2 Comparison 136
5.2.1 Execution Time 136
5.2.2 Objective Quality Evaluation 138
5.3 Summary 159
VI Design of Disparity Estimation Engine for High Definition 3DTV Applications 161
6.1 Architectural Analysis 161
6.1.1 Analysis of Hardware-Efficient Disparity Estimation Algorithm 161
6.1.2 Proposed Hardware-Based Algorithm 164
6.2 Overview of Disparity Estimation Engine 168
6.2.1 Proposed Three-Stage Pipelining Architecture 168
6.2.2 Schedule of Main Core 169
6.3 Detailed Architectural Design 170
6.3.1 Low-Resolution Disparity Estimation Stage 171
6.3.2 Occlusion Handling Stage 179
6.3.3 High-Resolution Disparity Estimation Stage 184
6.4 External Memory Access 189
6.4.1 Bandwidth Requirement 189
6.4.2 External Memory Architecture 191
6.4.3 Data Configuration in External Memory 192
6.4.4 External Memory Access Schedule 194
6.5 Implementation Result 195
6.5.1 Hardware Cost 195
6.5.2 Disparity Quality 199
6.6 Summary 203
VII Conclusion 204
7.1 Contribution 204
7.2 Future Work 205
Bibliography 206

Local Approach for Disparity Estimation
[1] S. Birchfield and C. Tomasi, “A pixel dissimilarity measure that is insensitive to image sampling” IEEE Trans. Pattern Anal. Mach. Intell.(TPAMI), no. 20, vol. 4, pp. 401-406, Apr. 1998.
[2] H. Hirschmuller and D. Scharstein, “Evaluation of cost functions for stereo matching,” in Proc. IEEE Conf. on Comput. Vision Pattern Recognition (CVPR’07), Jun. 2007.
[3] N. Y.-C. Chang, Y.-C. Tseng, and T.-S. Chang, “Analysis of color space and similarity measure impact on stereo block matching,” in Proc. IEEE Asia Pacific Conf. on Circuits and Syst. (APCCAS’08), Dec. 2008, pp. 926-929.
[4] J. Lu, G. Lafruit, and F. Catthoor, “Anisotropic local high-confidence voting for accurate stereo correspondence,” in Proc. SPIE Image Process.: Algorithm and Syst. VI, vol. 68120, Jan. 2008.
[5] K. Zhang, J. Lu, and G. Lafruit, “Scalable stereo matching with locally adaptive polygon approximation,” in Proc. IEEE Int. Conf. on Image Process. (ICIP’08), Oct. 2008, pp. 313-316.
[6] K. Zhang, J. Lu, and G. Lafruit, “Cross-based local stereo matching using orthogonal integral images,” IEEE Trans. Circuits Syst. Video Technol., no. 19, vol. 7, pp. 1073-1079, Jul. 2009.
[7] K.-J. Yoon and I.-S. Kweon, “Adaptive support-weight approach for correspondence search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4, pp. 650-656, Apr. 2006.
[8] M.-H. Ju and H.-B. Kang, “Constant time stereo matching” in Proc. Int. Conf. on Machine Vision and Image Process. (IMVIP’09), Step. 2009, pp. 13-17.
[9] W. Yu, T. Chen, F. Franchetti, and J. C. Hoe, “High performance stereo vision designed for massively data parallel platforms,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 11, pp. 1509-1519, Nov. 2010.
[10] N. Y.-C. Chang, T.-H. Tsai, B.-H. Hsu, Y.-C. Chen, and T.-S. Chang, “Algorithm and architecture of disparity estimation with mini-census adaptive support weight,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 6, pp. 792-805, Jun. 2010.
Dynamic Programming
[11] Y. Ohta and T. Kanade, “Stereo by intra- and inter- scanline search using dynamic programming,” IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), no. 7, vol. 2, pp. 139-154, Mar. 1985.
[12] O. Veksler, “Stereo correspondence by dynamic programming on a tree,” in Proc. IEEE Conf. on Comput. Vision Pattern Recognition (CVPR’05), 2005, pp. 384-390.
[13] Y .Deng and X. Lin, “A fast line segment based dense stereo algorithm using tree dynamic programming,” in Proc. European Conf. on Comput. Vision (ECCV’06), 2006, pp. 201-210.
[14] C. Lei, J. Selzer, Y.-H. Yang, “Region-tree based stereo using dynamic programming optimization,” in Proc. IEEE Conf. on Comput. Vision Pattern Recognition (CVPR’06), vol. 2, 2006, pp. 2378-2385.
Graph-cut
[15] V. Kolomogorov and R. Zabih, “Computing visual correspondence with occlusions using graph cuts,” in Proc. IEEE Int. Conf. on Comput. Vision (ICCV’01), vol. 2, Jul. 2001, pp. 508-515.
[16] L. Ford and D. Fulkerson, Flows in networks, Princeton Univ. Press, 1962.
[17] A. V. Goldberg, “A new approach to the maximum flow problem,” J. of the ACM, vol. 35, pp. 921-940, 1988.
[18] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), vol. 23, no. 11, pp. 1222-1239, Nov. 2001.
[19] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,” IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), vol. 26, no. 9, pp. 1124-1137, Sep. 2004.
[20] C.-W. Chou, J.-J. Tsai, H.-M. Hang, and H.-C. Lin, “A fast graph cut algorithm for disparity estimation,” in Proc. Picture Coding Symp. (PCS’10), Nagoya, Japan, Dec. 2010, pp. 326-329.
[21] B. V. Cherkassky and A. V. Goldberg, “On implementing the push-relabel method for the maximum flow problem,” Algorithmica, New York Inc.: Spring-Verlag, 1997, vol. 19, pp. 390-410.
[22] A. Delong and Y. Boykov, “A scalable graph-cut algorithm for N-D grids,” in Proc. IEEE Conf. on Comput. Vision Pattern Recognition (CVPR’08), Jun. 2008.
[23] N. Y.-C. Chang and T.-S. Chang, “A scalable graph-cut engine architecture for real-time vision,” in Proc. VLSI design/CAD Symp., Hualien, Taiwan, 2007.
Belief Propagation
[24] J. Sun, N.-N. Zhang, and H.-Y. Shum, “Stereo matching using belief propagation,” IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), vol. 25, no. 7, pp. 787-800, Jul. 2003.
[25] P. F. Felzenswalb and D. P. Huttenlocher, “Efficient belief propagation for early vision,” Int. J. Comput. Vision (IJCV), vol. 70, no. 1, pp. 41-54, May 2006.
[26] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, and C. Rother, “A comparative study of energy minimization methods for Markov Random Fields with smoothness-based priors,” IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), vol. 30, no. 6, pp. 1060-1080, Jun. 2008.
[27] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister, “Real-time global stereo matching using hierarchical belief propagation,” in Proc. British Mach. Vision Conf. (BMVC), 2006.
[28] S. Park C. Chen, and H. Jeong, “VLSI architecture for MRF based stereo matching,” in Proc. Int. Symp. on Syst., Architecture, Modeling and Simulation (SAMOS’07), Greece, Jul. 2007.
[29] C.-C. Cheng, C.-K. Liang, Y.-C. Lai, H. H. Chen, and L.-G. Chen, “Analysis of belief propagation for hardware realization,” in Proc. IEEE Workshop on Signal Process. Syst. (SiPS’08), Washington DC, USA, Oct. 2008, pp. 152-157.
[30] C.-C. Cheng, C.-K. Liang, Y.-C. Lai, H. H. Chen, and L.-G. Chen, “Fast belief propagation process element for high-quality stereo estimation,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP’09), Taipei, Taiwan, Apr. 2009, pp. 745-748.
[31] C.-K. Liang, C.-C. Cheng, Y.-C. Lai, L.-G. Chen, and H. H. Chen, “Hardware-efficient belief propagation,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognition (CVPR’09), Florida, USA, Jun. 2009, pp. 80-87.
[32] C.-C. Cheng, C.-T. Li, C.-K. Liang, Y.-C. Lai, and L.-G. Chen, “Architecture design of stereo matching using belief propagation,” in Proc. IEEE Int. Symp. Circuits and Syst. (ISCAS’10), Jun. 2010, pp. 4109-4112.
[33] C.-K. Liang, C.-C. Cheng, Y.-C. Li, L.-C. Chen, and H. H. Chen, “Hardware-efficient belief propagation,” IEEE Trans. Circuits Syst. Video Technol. (TCSVT), vol. 21, no. 5, pp. 525-537, May 2011.
[34] S. C. Park and H. Jeong, “Memory-efficient iterative process for two-dimensional first-order regular graph,” Optics Letter, vol. 33, no. 1, pp. 74-76, Jan. 2008.
[35] T. Yu, R.-S. Lin, B. Super, B. Tang, “Efficient message representation for belief propagation,” in Proc. IEEE Int. Conf. on Comput. Vision (ICCV’07), Oct. 2007.
[36] Y.-C. Tseng, N. Chang, and T.-S. Chang, “Low memory cost block-based belief propagation for stereo correspondence,” in Proc. IEEE Int. Conf. on Multimedia and Expo (ICME), Beijing, China, Jul. 2007, pp. 1415-1418.
[37] M. P. Kumar and P. H. S. Torr, “Fast memory-efficient generalized belief propagation,” in Proc. European Conf. on Computer Vision (ECCV’06), vol. 3954, Austria, May 2006, pp. 451-463.
[38] Y.-C. Tseng, N. Y.-C. Chang, and T.-S. Chang, “Block-based belief propagation with in-place message updating for stereo vision,” in Proc. IEEE Asia Pacific Conf. on Circuits and Syst. (APCCAS’08), Macau, China, Dec. 2008, pp. 918-921.
[39] A. Klaus, M. Sormann, and K. Karner, “Segment-based stereo matching using belief propagation and self-adapting dissimilarity measure,” in Proc. IEEE Int. Conf. on Pattern Recognition (ICPR’06), Sep. 2006, pp. 15-18.
[40] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister, “Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling,” IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), vol. 31, no. 3, pp. 1-13, Mar. 2009.
[41] E. S. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs, “Temporally consistent reconstruction from multiple video streams using enhanced belief propagation,” in Proc. IEEE Int. Conf. on Comput. Vision (ICCV’07), Rio de Janeiro, Brazil, Oct. 2007.
[42] K. Ogawara, “Approximate belief propagation by hierarchical averaging of outgoing messages,” in Proc. IEEE Int. Conf. Pattern Recognition (ICPR’10), Istanbul, Aug. 2010, pp. 1368-1372.
[43] Q. Yang, L. Wang, and N. Ahuja, “A constant-space belief propagation algorithm for stereo matching,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognition (CVPR’10), Jun. 2010, pp. 1458-1465.
[44] M. Sarkis and K. Diepold, “Sparse stereo matching using belief propagation,” in Proc. IEEE Int. Conf. on Image Process. (ICIP’08), San Diego, CA, Oct. 2008, 1780-1783.
Disparity Refinement Algorithms
[45] G. Egnal and R. P Wildes, “Detecting binocular half-occlusions: empirical comparisons of five approaches,” IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), vol. 24, no. 8, pp. 1127-1133, Aug. 2002.
[46] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to analysis and automated cartography,” Commun. of the ACM, vol. 24, no. 6, pp. 381-395, 1981.
[47] M. Gong, “Enforcing temporal consistency in real-time stereo estimation,” in Proc. European Conf. on Comput. Vision (ECCV’06), vol. 3953, 2006, pp. 564-577.
[48] D. Min, S. Yea, Z. Arican, and A. Vetro, “Disparity search range estimation: forcing temporal consistency,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP’10), Dallas, Texas, May 2010, pp. 2366-2369.
[49] R. Khoshabeh, S. H. Chan, T. Q. Nyuyen, “Spatio-temporal consistency in video disparity estimation,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP’11), Prague, Czech Republic, May 2011.
[50] T.-W. Chen and S.-Y. Chien, “Bandwidth adaptive hardware architecture of K-means clustering for video analysis,” IEEE Trans. Very Large Scale Integr. Syst. (TVLSI), vol. 18, no. 6, pp. 957-966, Jun. 2010.
View Synthesis Algorithms and Implementation
[51] C. Fehn, “Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV, ” in Proc. SPIE Conf. on Stereoscopic Displays and Virtual Reality Systems, vol. 5291, May 2004, pp. 93-104.
[52] C. Vázquez, W. J. Tam, and F. Speranza, “Stereoscopic imaging: filling disoccluded areas in image-based rendering,” in Proc. SPIE Three-Dimensional TV, Video, and Display V, vol. 6392, Oct. 2006, pp. 123-134.
[53] C.-M. Cheng, S.-J. Lin, S.-H. Lai and J.-C. Yang, “Improved novel view synthesis from depth image with large baseline,” in Proc. IEEE Int. Conf. on Pattern Recognition (ICPR’08), Dec. 2008, pp.1-4.
[54] L. Zhang and W. J. Tam, “Stereoscopic image generation based on depth images for 3D TV,” IEEE Trans. Broadcast., vol. 51, no. 2, pp. 191-199, Jun. 2005.
[55] Y.-R. Horng, Y.-C. Tseng, and T.-S. Chang, “Stereoscopic image generation with directional Gaussian filter,” in Proc. IEEE Int. Symp. Circuits and Syst. (ISCAS’10), May-Jun. 2010, pp. 2650-2653.
[56] W.-Y. Chen, Y.-L. Chang, S.-F. Lon, L.-F. Ding, and L.-G. Chen, “Efficient depth image based rendering with edge dependent depth filter and interpolation,” in Proc. IEEE Int. Conf. on Multimedia and Expo (ICME’07), Jul. 200, pp. 1314-1317.
[57] Y. K. Park, K. Jung, Y. Oh, S. Lee, J. K. Kim, G. Lee, H. Lee, K. Yun, N. Hur, and J. Kim, “Depth-image-based rendering for 3DTV service over T-DMB,” Signal processing: Image communication, vol. 24, no. 1-2, pp. 122-36, Jan. 2009.
[58] S. Rogmans, J.-B. Lu, P. Bekaert, and G. Lafruit, “Real-time stereo-based view synthesis algorithms: a unified framework and evaluation on commodity GPUs,” Signal Processing: Image communication, vol. 24, no. 1-2, pp. 49-64, Jan. 2009.
[59] Y. Morvan, “Acquisition, compression and rendering of depth and texture for multi-view video,” Ph.D. thesis, Eindhoven University of Technology, Netherlands, Apr. 2009.
[60] A. Telea, “An image inpainting technique based on the fast marching method,” J. Graphics, GPU, & Game Tools, vol. 9, no. 1, pp.25-36, 2004.
[61] P.-K. Tsung, P.-C. Lin, K.-Y. Chen, T.-D. Chuang, H.-J. Yang, S.-Y. Chien, L.-F. Ding, W.-Y. Chen, C.-C. Cheng, T.-C. Chen, and L.-G. Chen, “A 216fps 4096x2160 3DTV set-top box SoC for free-viewpoint 3DTV applications,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC’11), San Francisco, CA, Feb. 2011, pp. 124-126.
[62] Y.-R. Horng, Y.-C. Tseng, and T.-S. Chang, “VLSI architecture for real time HD1080p view synthesis engine,” to appear in IEEE Trans. Circuits Syst. Video Technol. (TCSVT), vol. 21, no. 9, Sep. 2011.
Associated Algorithms to 3DVC
[63] Depth estimation reference software (DESR), version 4.0 [Online]. Available: http://wg11.sc29.org/svn/repos/MPEG-4/test/tags/3D/depth_estimation/ DERS_4
[64] View Synthesis Reference Software (VSRS), version 3.5 [Online]. Available: http://wg11.sc29.org/svn/repos/MPEG-4/test/tags/3D/view_synthesis/VSRS_3_5
[65] Enhancement of temporal consistency for multi-view depth map estimation, ISO/IEC JTC1/SC29/WG11, M15594, Jul. 2008.
[66] Depth estimation improvement for depth discontinuity areas and temporal consistency preserving, ISO/IEC JTC1/SC29/WG11, M16048, Feb. 2008.
[67] The consideration of the improved depth estimation algorithm: the depth estimation algorithm for temporal consistency enhancement in non-moving background, ISO/IEC JTC1/SC29/WG11, m16070, Jan. 2009.
[68] A soft-segmentation matching in Depth Estimation Reference Software (DERS) 5.0, ISO/IEC JTC1/SC29/WG11, M17049, Xian, China, Oct. 2009.
[69] D. Comaniciu and P. Meer, “Mean-shift: a robust approach toward feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), vo. 24, no. 5, pp. 603-619, May 2002.
[70] Open Source Computer Vision [Online]. Available: http://opencv.willowgarage.com/wiki/
Test Sequences and Evaluation Methods
[71] Description of exploration experiments in 3D video coding, ISO/IEC JTC1/SC29/WG11, W11095, Kyoto, Japan, Jan. 2010.
[72] D. Scharstien and R. Szeliski, Middlebury Stereo Evaluation – Version 2 [Online]. Available: http://vision.middlebury.edu/stereo/eval/
[73] D. Scharstien and R. Szeliski, “High-accuracy stereo depth maps using structured light,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognition (CVPR’03), vol. 1, Jun. 2003, pp. 195-202.
[74] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. (TIP), vol. 13, no. 4, pp. 600-612, Apr. 2004.
[75] Peak signal-to-perceptible-noise ratio tool: PSPNR 1.0, ISO/IEC JTC1/SC29/WG11, M16584, London, UK, Jul. 2009.
[76] PSPNR Tool 2.0, ISO/IEC JTC1/SC29/WG11, M16890, Xian, China, Oct. 2009.
[77] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, The SSIM Index for Image Quality Assessment [Online]. Available: http://www.cns.nyu.edu/~lcv/ssim/
[78] HHI test materials for 3D video, ISO/IEC JTC1/SC29/WG11, M15413, Archamps, France, Apr. 2008.
Joint Bilateral Filter and Disparity Upsampling
[79] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, “Joint bilateral upsampling,” ACM Trans. on Graphics (TOG), vol. 26, no. 3, article 96, Jul. 2007.
[80] D. Chan, H. Buisman, C. Theobalt, and S. Thrun, “A noise-aware filter for real-time depth upsampling,” in Proc. European Conf. on Comput. Vision Workshop on Multicamera and Multimodal Sensor Function Algorithms and Applications, Oct. 2008, pp. 1-12.
[81] A. K. Riemens, O. O. Gangwal, B. Barenbrug, and R.-P. M. Berretty, “Multi-step joint bilateral depth upsampling,” in Proc. SPIE Visual Commun. and Image Process., vol. 7257, Jan. 2009.
[82] O. P. Gangwal, E. Coezijn, and R.-P. Berretty, “Real-time implementation of depth map post-processing for 3D-TV on a programmable DSP (TriMedia),” in Proc. IEEE Int. Conf. on Consumer Electronics (ICCE’09), Jan. 2009.
[83] Q. Yang, K.-H. Tan, and N. Ahuja, “Real-time O(1) bilateral filtering,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognition (CVPR’09), Aug. 2009, pp. 557-564.
[84] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-dynamic-range images,” ACM Trans. Graphics (TOG), vol. 21, no. 3, pp. 257-266, Jul. 2002.
[85] S. Paris and F. Durand, “A fast approximation of the bilateral filter using a signal processing approach,” in Proc. European Conf. on Comput. Vision (ECCV’06), May 2006, pp. 568-580.
[86] S. Paris and F. Durand, “A fast approximation of the bilateral filter using a signal processing approach,” Int. J. Comput. Vision, vol. 81, no. 1, pp. 24-52, Jan. 2009.
[87] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image processing with the bilateral grid,” ACM Trans. Graphics (TOG), vol. 26, no. 3, article 103, pp. 1-9, Jul. 2007.
[88] A. Adams, N. Gelfand, J. Dolson, and M. Levoy, “Gaussian KD-trees for fast high dimensional filtering,” ACM Trans. Graphics (TOG), vol. 28, no. 3, article 21, Aug. 2009.
[89] T. Q. Pham and L. J. van Vliet, “Separable bilateral filtering for fast video processing,” in Proc. IEEE Int. Conf. on Multimedia and Expo (ICME’05), Jul. 2005.
[90] T.-S. Huang, “Two-dimensional digital signal processing II: transforms and median filters,” Spring-Verlag, New York, 1981, pp. 209-211.
[91] F. Porikli, “Constant time O(1) bilateral filtering,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognition (CVPR’09), Aug. 2008, pp. 1-8.
[92] B. Weiss, “Fast median and bilateral filtering,” ACM Trans. Graphics (TOG), vol. 25, no. 3, pp. 519-526, Jul. 2006.
[93] M.-H. Ju, and H.-B. Kang, “Constant time stereo matching,” in Proc. Int. Machine Vision and Image Processing Conf., Sep. 2009, pp. 13-17.
[94] C. Charoensak and F. Satter, “FPGA design of a real-time implementation of dynamic range compression for improving television picture,” in Proc. IEEE Int. Conf. on Information Commun. and Signal Process. (ICICS’07), Dec. 2007.
[95] T. Q. Vinh, J. H. Park, Y.-C. Kim, and S. H. Hong, “FPGA implementation of real-time edge-preserving filter for video noise reduction,” in Proc. IEEE Int. Conf. on Comput. and Elect. Eng. (ICCEE’08), Dec. 2008, pp. 611-614.
[96] A. Gabiger, M. Kube, and R. Weigel, “A synchronous FPGA design of a bilateral filter for image processing,” in Proc. IEEE Ind. Electron. Conf. (IECON’09), Nov. 2009, pp. 1990-1995.
[97] S.-K. Han, “An architecture for high-throughput and improved-quality stereo vision processor,” M.S. thesis, Dept. of Electrical and Computer Engineering, Univ. of Maryland, 2010.
[98] A. Wong. NVIDIA GeForce 8800 GTX/GTS Tech Report [Online]. Available: http://www.techarp.com/showarticle.aspx?artno=358&pgno=0
[99] A. L. Shimpi and D. Wilson. Nvidia’s 1.4 billion transistor GPU: GT200 arrives as the GeForce GTX 280 & 260 [Online]. Available: http://www.anandtech.com/show/2549
Others
[100] M. Tanimoto, “Free-viewpoint television”, Image and Geometry Processing for 3-D Cinematography, Springer-Verlag, vol. 5, part 1, 2010, pp. 52-76.
[101] M. Tanimoto, M. P. Tehrani, T. Fujii, and T. Yendo, “Free-viewpoint TV,” IEEE Signal Processing Mag., vo. 28, no. 1, pp. 67-76, Jan. 2011.
[102] Q. Wei, “Converting 2D to 3D: a survey,” Inform. and Commun. Theory Group, Faculty Elect. Eng., Math. and Comput. Sci., Delft Univ. of Technol., Netherlands, Research Assignment, Dec. 2005.
[103] D. Hoiem, A. Stein, A. A. Efros, and M. Hebert, “Recovering occlusion boundaries from a single image,” in Proc. IEEE Int. Conf. on Comput. Vision (ICCV’07), Oct. 2007.
[104] D. Hoiem, A. Efros, and M. Hebert, “Recovering surface layout from an image,” Int. J. Comput. Vision (IJCV), vol. 75, no. 1, pp. 151-172, Oct. 2007.
[105] D. Scharstien and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithm,” Int. J. Comput. Vision (IJCV), vol. 47, no. 1-3, pp. 7-42, May 2002.
[106] M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computational stereo,” IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), vol. 25, no. 8, pp. 993-1008, Aug. 2003.
[107] Joint draft 6.0 on multiview video coding, ISO/IEC JTC1/SC29 and ITU-T SG16 Q.6 JVT-Z209, Antalya, Turkey, Jan. 2008.
[108] N. Matthews, X. Meng, P. Xu, and N. Qian, “A physiological theory of depth perception from vertical theory,” Vision Research, vol. 43, no. 1, pp. 85-99, Jan. 2003.
[109] J. C. A. Read and B. G Cumming, “Does depth perception require vertical-disparity detectors?” J. of Vision, vol. 6, no. 12, pp. 1323-1355, Nov. 2006.
[110] Micron Inc. 1Gb DDR3 SDRAM: MT41J128M8JP-125 [Online]. Available: http://www.micron.com/get-document/?documentId=425
[111] J. Diaz, E. Ros, R. Carrillo, and A. Prieto, “Real-time system for high-image resolution disparity estimation,” IEEE Trans. Image Process. (TIP), vol. 16, no. 1, pp. 280-285, Jan. 2007.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top