跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/09 06:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅弘聘
研究生(外文):Luo,Hong-Ping
論文名稱:High-k/Metal Gate 與 SOI金氧半場效電晶體RTN分析與可靠度的研究
論文名稱(外文):Investigation on RTN and Reliability of High-k/Metal Gate and SOI MOSFETs
指導教授:張鼎張
指導教授(外文):Chang,Ting-Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:77
中文關鍵詞:高介電常數氧化層金屬閘極金氧半電晶體矽覆絕緣金氧半場效電晶體隨機雜訊分析
外文關鍵詞:High-k/Metal Gate MOSFETsSOI MOSFETsRTN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:407
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
近年來積體電路隨著摩爾定律的微縮,增加了單位面積中的電晶體密度,降低製程成本提高了IC的運作效率。雖然電晶體的微縮增加了IC元件的性能與經濟的效益,但其中還是必須去克服幾個問題:1.隨著定電場微縮的過程中,必須降低閘極氧化層SiO2 的厚度,如此會導致閘極漏電並造成能量的消耗。2.隨著電晶體微縮至深次微米尺度,其必須面對短通道效應與物理微縮的極限。因此未來的ULSI元件而言也提出了先進的技術到CMOS製程當中,克服了能量的消耗以及元件的運作效率的問題,其中包括了SOI元件以及high-k/metal gate製程技術。
當元件微縮至深次微米尺度時,RTN(或著稱作RTS)可探討元件的缺陷位置以及電性上的分析。隨著元件尺寸的微縮,在元件氧化層的費米能階附近有機會存在單顆或是數顆的缺陷,並且可由RTN來深入的觀察,在此我們藉由RTN去探討SOI與high-k/metal gate元件去做一個深入的討論。
In the past years, chips complexity have increased at an exponential rate, because of the constant shrinking of device size to increase device density, improved manufacturing practice to reduce fabrication cost and increase IC’s performance. Although scaling devices can improve IC’s performance and be economically fabricated, it still have to overcome some issues. First, when devices scaled down it have to follow the constant electric field, so the thickness of gate dielectric, namely SiO2 need to be lessened. This will increase gate leakage current and lead to more power dissipation. Secondly, when scaling device down to deep sub-micrometer, MOSFETs face short channel effect and physical scaling limit. Therefore, for the future ULSI devices, there are some advance technology have been proposed and introduced into CMOS fabrication process to achieve higher performance and lower power consumption, which includes silicon-on-insulator (SOI) technology and high-k/metal gate stack technology.
When devices scaled down to deep sub-micrometer the random telegraph noise (RTN) or so-called random telegraph signal (RTS) will be observed and influence device dynamic performance. In deep sub-micrometer MOSFETs, it is possible to exist one or few oxide traps in high-k or SiO2 layer which were distributed over the vicinity of Si surface Fermi level. These traps can be investigated by RTS. In this article, we use RTN to focus on high-k/metal gate and silicon-on-insulator device to research electrical characteristics.

Chapter 1 1
Introduction 1
1-1 Background 1
1-2 Motivation 2
1-2-1 High-k/Metal Gate 3
1-2-2 Silicon-On-Insulator 4
1-3 Random Telegraph Noise 5
Chapter 2 11
Foundation of Theory 11
2-1 High-k MOSFET 11
2-1-1 Fermi-level Pining 11
2-1-2 Remote Phonon Scatering 11
2-2 Silicon-On-Insulator 12
2-2-1 Self Heating Effect 12
2-2-2 Floating Body Effect (Kink Effect) 13
2-3 Random Telegraph Noise 14
2-3-1Principle of RTN 14
2-3-2 RTN ΔId amplitude 15
(a.) Number Fluctuation 16
(b.) Mobility Fluctuation 16
(c.) Random Doping Induced Percolation Effect 16
2-3-3 Shockley-Read-Hall (SRH) 17
Chapter 3 23
Parameter Extraction and Measurement Technique 23
3-1 Determination of Device Parameter 23
3-2 RTN Parameter Extraction 24
3-2-1 Average emission time and capture time 24
3-2-2 Lateral position 25
3-2-3 Vertical position 26
3-3 Principle of Pulse I-V Technique 27
Chapter 4 30
RTN with Silicon-On-Insulator 30
4-1 Introduction 30
4-2 Introduction of SOI Sample and Experiment Procedure 31
4-3 Result and Discussion 32
4-3-1 Basic Electronic Measurement 32
4-3-2 RTN with Different Bias 34
4-3-3 RTN with Different Temperature 35
4-3-4 Location Extraction 36
4-3-5 Abnormal RTN (Transient ID) 38
(a.) Transient ID with Different Bias 38
(b.) Transient ID with Different Size 39
(c.) Transient ID with Different Temperature 39
(d.) Transient ID with Different Devices 40
(e.) Transient ID with Pulse Measurement 41
Chapter 5 60
RTN with High-k/Metal Gate 60
5-1 Introduction 60
5-2 Introduction of High-k/Metal Gate Sample and Experiment Procedure 61
5-3 Result and Discussion 62
5-3-1 RTN with Different Bias 62
5-3-2 HK/MG Multi-levels RTN Location Extraction 63
Chapter 6 74
Conclusion 74
Reference 76

1. Y. Kado, M. Suzuki, K. Koike, Y. Omura, and K. Izumi, Dig. Tech.
1992 Symposium on VLSI Circuits, 44 (1992)
2. Y. Hirano, T. Iwamatsu, K. Shiga, K. Nii, K. Sonoda, T. Matsumoto, S. Maeda, Y. Yamaguchi, T. Ipposhi, S. Maegawa, and Y. Inoue, Proc. Symp. VLSI Technology Dig. Tech., 48–49 (2002)
3. Rodbell, K.P. Heidel, D.F. Tang, H.H.K. Gordon, M.S. Oldiges, P. Murray, C.E., Trans. Nucl. Sci., 54, 2474-2479 (2007)
4. P. Oldiges, K. Bernstein, D. Heidel, B. Klaasen, E. Cannon, R. Dennard, H. Tang, M. Ieong, and H.-S. P. Wong, Proc. Symp. VLSI Technology, Dig. Tech., 46–47 (2002)
5. C. C Chang, L. C Chen, Mater. Lett., 32, 287-290 (1997)
6. L. Su, J. E. Chung, D. A. Antoniadis, K. E. Goodson, and M. I. Flik, IEEE Trans. Electron Devices, 41, 69-75 (1994).
7. S. Polonsky and K. A. Jenkins, IEEE Electron Device Lett., 25, 208-210 (2004).
8. K. K. Hung, P. K. Go, C. Hu, Y. C. Cheng, IEEE Electron Device Lett., 11, 90 (1990)
9. Dongwook Suh and J. G. Fossum, in IEDM Tech. Dig., 661–664 (1994).
10. A. Mercha, J. M. Rafi, E. Simoen, E. Augendre, and C. Claeys, IEEE Trans. Electron Devices, 50, 1675–1682 (2003).
11. J. Pretet, T. Matsumoto, T. Poiroux, S. Cristoloveanu, R. Gwoziecki, C. Raynaud, A. Roveda, and H. Brut, in Proc. ESSDERC, 515–518 (2002).
12. C. H. Dai, T. C. Chang, A. K. Chu, Y. J. Kuo, F. Y. Jian, W.H. Lo, S. H. Ho, C. E. Chen, W. L. Chung, J. M. Shih, G. Xia, O. Cheng, and C. T. Huang, IEEE Electron Device Lett., 32, 847–849 (2011).
13. J. W. Wu, J. W. You, H. C. Ma, and C. C. Cheng, C. S. Chang, G. W. Huang, T. Wang, Appl. Phys. Lett. 85, 5076-5077 (2004)
14. O. R. DIT BUISSON, G. GHIBAUDO and J. BRINI, Solid-State Electronics, 35, 1273-1276 (1992)
15. N. B. Lukyanchikova, M. V. Petrichuk, N. Garbar, A. Mercha, E. Simoen, Appl. Phys. Lett. 94, 4461-4469 (2003)
16. M. Trabelsi, L. Militaru, N. Sghaier, A. Souifi, N. Yacoubi, Solid-State Electronics,56, 1-7 (2011)
17. M. J. Kirton and M. J. Uren, Advance In Physics 38, 367-468 (1989)
18. S. Lee, H. J. Cho, Y. Son, D. S. Lee, H. Shin, in IEDM Tech. Dig., 1-4 (2009)
19. N. Tega, H. Miki, T. Osabem, A. Kotabe, K. Otsuga, H. Kurata, S. Kamohara, K. Tokmi, Y. Ikeda, and R. Yamada, in IEDM Tech. Dig.,1-4 (2006)
20. Zhongming Shi Mieville, J.-P. Dutoit, M., IEEE Trans. Electron Devices, 41, 1161-1168 (1994)
21. H.C Ma; Y.L Chou; J.P Chiu; Y.T Chung; T.Y Lin; T. Wang; Y.P Chao; K.C Chen; C.Y Lu; IEEE Trans. Electron Devices, 58, 623-630 (2002)
22. J.-P Colinge.; IEEE Electron Devices Lett., 9, 97-99 (1988).
24. J. Tihani and H. Schlotterer., IEEE Trons. Electron Devices, 22, 1017-1023, 25. C. H. Dai, T. C. Chang, A. K. Chu, Y. J. Kuo, S. C. Chen, C. C. Tsai, S. H. Ho, W. H. Lo, Guangrui Xia, Osbert Cheng, and Cheng Tung Huang, IEEE Electron Device Lett., 31, 540-542 (2010).
26. S.H. Lo, D.A. Buchanan, Y. Taur, W. Wang, IEEE Electron Device Lett. 18 (1997) 209
27. International Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, CA, 2001)
28. Intel's High k/Metal Gate Announcement (2003).
29. M. Houssa, M. Aoulaiche, S. Van Elshocht, S. De Gendt, G. Groeseneken, and M. M. Heyns, Appl. Phys. Lett. 86 (2005) 173509.
30. K. Shiraishi, K. Yamada, K. Torii, Y. Akasaka, K. Nakajima, M. Konno, T. Chikyow, H. Kitajima, T. Arikado, Jpn. J. Appl. Phys. 43 (2004) L1413.
31. N. B. Lukyanchikova, M. V. Petrichuk, N. Garbar, A. Mercha, E. Simoen, and C. Claeys; J. Appl. Phys. 94 (2003) 4461.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top