跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 09:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張耀仁
研究生(外文):Chang, Yao-Jen
論文名稱:三維積體電路關鍵技術之金屬高分子混合接合研究
論文名稱(外文):Three-Dimensional Integrated Circuit Key Technology: Metal to Polymer Hybrid Bonding
指導教授:陳冠能
指導教授(外文):Chen, Kuan-Neng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:96
中文關鍵詞:三維積體電路矽晶直通孔混合接合
外文關鍵詞:3D-ICsTSVHybrid bonding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:801
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
本論文為研究金屬與高分子材料之混合接合在三維整合結構的特性分析,藉由此方案可同時提供絕佳的接合強度及傑出的電性。經過材料的選擇及測試,我們選擇金屬銅、錫作為內連線以及高分子材料-苯並環丁烯作(BCB)為介電材料,進一步地我們提出三維整合結構。此結構採用面對面接合、銅TSV以及銅/錫對BCB混合接合等先進關鍵技術。經過TSV製作、銅/錫與BCB顯影、混合接合、晶圓磨薄及背面金屬連線的一連串流程製作而成。在這三維整合結構,包含克爾文結構(Kelvin structure)及菊花鏈(daisy chain)設計。在5μm 及10μm 大小、深度在40μm深的TSV測試結構,分別量測到49.3mΩ及12.6mΩ的阻值。傑出的電性也指出此設計的結構符合預期並可應用在未來3DIC相關產品上。最後,我們也測試一些可靠性的實驗,包括溼度、長時間電流,也證明了BCB材料可提供良好接合品質。
The main topics of this thesis include electrical characterization and reliability investigation of metal to polymer hybrid bonding in three-dimensional integrated circuit. Hybrid bonding is one of the most important technologies in 3D-ICs because of dielectric polymer and metal can provide reinforcement of bonding strength and electrical interconnection simultaneously. Cu/Sn micro-bumps and BCB (benezocy-clobutene) were adopted and optimized to form metallization and dielectric material for hybrid bonding. As the result, a wafer-level three-dimensional integration scheme with Cu TSVs, based on face-to- face and Cu/Sn micro-bumps to BCB low temperature hybrid bonding, was demonstrated. The main process flow includes the sequence of Cu TSV formation, Cu/Sn and BCB development, hybrid bonding, wafer thinning and backside re-distribution metal layer. Kelvin structure and daisy chain design were fabricated for electrical characterization and stability evaluation. Reliability tests such as current stressing and humidity test were performed without deterioration, showing good sealing ability of BCB. The results of Kelvin structure for 10μm TSV are 49.3 mΩ for 5μm TSV and 12.6 mΩ, indicating excellent electrical characterization to allow the possibility of future mass production for 3D IC area.
Chapter 1 Introduction
1-1 General Background --------------------------------------------------------1
1-2 Motivation-Why 3 D integration? ----------------------------------------5
1-3 Organization of the thesis ------------------------------------------------- 8
Chapter 2 Experimental Instruments
2-1 Introduction ----------------------------------------------------------------12
2-2 Process equipment : DRIE, Sputter, Aligner, Wafer Bonder---------13
2-3 Material analysis instruments : SEM, FIB, TEM,----------------------20
2-4 Electrical Measurement Instrument------------------------------------- 24
Chapter 3 Process Evaluation and Material Selection of Hybrid Bonding for Three-dimensional Integrated Circuit
3-1 Introduction------------------------------------------------------------------35
3-2 Adhesive material evaluation---------------------------------------------36
3-3 Metal bonding material evaluation: Cu-Cu thermal compressive bonding vs. Cu/Sn to Cu/Sn eutectic bonding--------------------------38
3-3.1 Cu wafer bonding--------------------------------------------------- 39
3-3.1.1 Cu wafer bonding development----------------------------40
3-3.2 Cu/Sn wafer bonding----------------------------------------------- 41
3-3.2.1 Fundamental Cu/Sn binary system-------------------------42
3-3.2.2 Solid-liquid interdiffusion bonding (SOLID) ------------43
3-3.2.3 Cu/Sn micro-bumps bonding process--------------------- 45
3-4 The fabrication of low temperature wafer level Cu/Sn micro-bumps to BCB adhesive hybrid bonding --------------------------------------- 46
Chapter 4 Process Evaluation Cu TSVs based on Cu/Sn micro-bumps and BCB Hybrid Bonding for Three-dimensional Integrated Circuit
4-1 Introduction-----------------------------------------------------------------58
4-2 Structure design and fabrication of Cu TSV and Cu/Sn to BCB hybrid bonding ----------------------------------------------------------- 61
Chapter 5 Electrical Characterization and Reliability Investigations of Cu TSVs with Wafer-Level Cu/Sn-BCB Hybrid Bonding
5-1 Introduction----------------------------------------------------------------- 79
5-2 Electrical Characterization and Reliability Investigations of Cu TSVs with Wafer-Level Cu/Sn-BCB Hybrid Bonding------------------------80
Chapter 6 Conclusions and Future work
5-1 Conclusions -----------------------------------------------------------------87
5-2 Future Work -----------------------------------------------------------------88

References ----------------------------------------------------------------------- 89
Vita --------------------------------------------------------------------------------96

[1] S. Koester, A. Young, R. Yu, S. Purushothaman, K. N. Chen, D. La Tulipe, N. Rana, L. Shi, M. Wordeman, and E. Sprogis, "Wafer-level 3D integration technology," IBM Journal of Research and Development, vol. 52, pp. 583-597, 2008.
[2] R. S. Patti, "Three-dimensional integrated circuits and the future of system-on-chip designs," Proceedings of the IEEE, vol. 94, pp. 1214-1224, Jun. 2006.
[3] A. Topol, D. C. L. Tulipe, L. Shi, D. Frank, K. Bernstein, S. Steen, A. Kumar, G. Singco, A. Young, and K. Guarini, "Three-dimensional integrated circuits," IBM Journal of Research and Development, vol. 50, pp. 491-506, 2006.
[4] S. Das, A. Fan, K. N. Chen, C. S. Tan, N. Checka, and R. Reif, "Technology, performance, and computer-aided design of three-dimensional integrated circuits," in Proceeding on ISPD 2004, pp. 108-115.
[5] C. T. Ko, Z. C. Hsiao, H. C. Fu, K. N. Chen, W. C. Lo, and Y. H. Chen, "Wafer-to-wafer hybrid bonding technology for 3D IC," in Proc. ESTC, Berlin, Sept. 2010, pp. 1-5.
[6] P. Morrow, C. M. Park, S. Ramanathan, M. Kobrinsky, and M. Harmes, "Three-dimensional wafer stacking via Cu-Cu bonding integrated with 65-nm strained-Si/low-k CMOS technology," Electron Device Letters, IEEE, vol. 27, pp. 335-337, 2006.
[7] P. Benkart, A. Munding, A. Kaiser, E. Kohn, A. Heittmann, H. Huebner, and U. Ramacher, "Three-dimensional integration scheme with a thermal budget below 300° C," Sensors and Actuators A: Physical, vol. 139, pp. 350-355, 2007.
[8] M. Chang, W. Wu, C. Lin, P. Chiu, M. Chen, Y. Chen, H. Lai, Z. Lin, S. Sheu, and T. Ku, "A Larger Stacked Layer Number Scalable TSV-based 3D-SRAM for High-Performance Universal-Memory-Capacity 3D-IC Platform," in Symposium on VLSI Circuits Kyoto, Japan,, Jun. 2011, pp. 13-15.
[9] N. Ranganathan, K. Prasad, N. Balasubramanian, and K. Pey, "A study of thermo-mechanical stress and its impact on through-silicon vias," Journal of Micromechanics and Microengineering, vol. 18, p. 075018, 2008.
[10] C. T. Ko, Z. C. Hsiao, Y. J. Chang, P. S. Chen, Y. J. Hwang, H. C. Fu, J. H. Huang, C. W. Chiang, S. S. Sheu, and Y. H. Chen, "A Wafer-Level Three-Dimensional Integration Scheme With Cu TSVs Based on Microbump/Adhesive Hybrid Bonding for Three-Dimensional Memory Application," IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, vol. 12, p. 209, 2012.
[11] K. N. Chen, S. H. Lee, P. S. Andry, C. K. Tsang, A. W. Topol, Y. M. Lin, J. Q. Lu, A. M. Young, M. Ieong, and W. Haensch, "Structure, design and process control for Cu bonded interconnects in 3D integrated circuits," in IEDM Tech. Dig., San Francisco, CA, Dec. 2006, pp. 367-370.
[12] R. Yu, F. Liu, R. Polastre, K. N. Chen, X. Liu, L. Shi, E. Perfecto, N. Klymko, M. Chace, and T. Shaw, "Reliability of a 300-mm-compatible 3DI technology based on hybrid Cu-adhesive wafer bonding," in IEDM Tech. Dig., San Francisco, CA, Dec. 2009, pp. 170-171.
[13] T. Fukushima, Y. Yamada, H. Kikuchi, and M. Koyanagi, "New three-dimensional integration technology using self-assembly technique," in IEDM Tech. Dig., San Francisco, CA, Dec. 2005, pp. 348-351.
[14] F. Liu, R. Yu, A. Young, J. Doyle, X. Wang, L. Shi, K. N. Chen, X. Li, D. Dipaola, and D. Brown, "A 300-mm wafer-level three-dimensional integration scheme using tungsten through-silicon via and hybrid Cu-adhesive bonding," in IEDM Tech. Dig., San Francisco, CA, Dec. 2008, pp. 1-4.
[15] J. Q. Lu, "3-D hyperintegration and packaging technologies for micro-nano systems," Proceedings of the IEEE, vol. 97, pp. 18-30, Jan. 2009.
[16] P. Svasek, E. Svasek, B. Lendl, and M. Vellekoop, "Fabrication of miniaturized fluidic devices using SU-8 based lithography and low temperature wafer bonding," Sensors and Actuators A: Physical, vol. 115, pp. 591-599, 2004.
[17] P. Abgrall, C. Lattes, V. Conedera, X. Dollat, S. Colin, and A. M. Gue, "A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films," Journal of Micromechanics and Microengineering, vol. 16, p. 113, 2006.
[18] C. Tan and R. Reif, "Silicon multilayer stacking based on copper wafer bonding," Electrochemical and Solid-State Letters, vol. 8, p. G147, 2005.
[19] Y. S. Tang, Y. J. Chang, and K. N. Chen, "Wafer-level Cu-Cu bonding technology," Microelectronics Reliability, 2011.
[20] K. Chen, C. Tan, A. Fan, and R. Reif, "Morphology and bond strength of copper wafer bonding," Electrochemical and Solid-State Letters, vol. 7, p. G14, 2004.
[21] J. McMahon, E. Chan, S. Lee, R. Gutmann, and J. Q. Lu, "Bonding interfaces in wafer-level metal/adhesive bonded 3D integration," in Proc. 58th ECTC, Lake Buena Vista, FL, Jun. 2008, pp. 871-878.
[22] S. Bader, W. Gust, and H. Hieber, "Rapid formation of intermetallic compounds interdiffusion in the Cu---Sn and Ni---Sn systems," Acta metallurgica et materialia, vol. 43, pp. 329-337, 1995.
[23] R. Agarwal, W. Zhang, P. Limaye, and W. Ruythooren, "High density Cu-Sn TLP bonding for 3D integration," in Proc. 59th ECTC, 2009, pp. 345-349.
[24] H. Liu, K. Wang, K. Aasmundtveit, and N. Hoivik, "Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding," Journal of Electronic Materials, pp. 1-10, 2012.
[25] L. Li, J. Jiao, L. Luo, and Y. Wang, "Cu/Sn isothermal solidification technology for hermetic packaging of MEMS," in Nano/Micro Engineered and Molecular Systems, 2006. NEMS '06. 1st 2006, pp. 1133-1137.
[26] R. Agarwal, W. Zhang, P. Limaye, R. Labie, B. Dimcic, A. Phommahaxay, and P. Soussan, "Cu/Sn microbumps interconnect for 3D TSV chip stacking," in Proc. 60th ECTC, 2010, pp. 858-863.
[27] R. Reif, A. Fan, K. N. Chen, and S. Das, "Fabrication technologies for three-dimensional integrated circuits," 2002, pp. 33-37.
[28] F. Bartels, J. Morris, G. Dalke, and W. Gust, "Intermetallic phase formation in thin solid-liquid diffusion couples," Journal of Electronic Materials, vol. 23, pp. 787-790, 1994.
[29] Y. Rong, J. Cai, S. Wang, and S. Jia, "Low temperature Cu-Sn bonding by isothermal solidification technology," in International Conference on ICEPT-HDP 2009, pp. 96-98.
[30] C. T. Ko and K. N. Chen, "Wafer-level bonding/stacking technology for 3D integration," Microelectronics Reliability, vol. 50, pp. 481-488, 2010.
[31] J. McMahon, J. Q. Lu, and R. Gutmann, "Wafer bonding of damascene-patterned metal/adhesive redistribution layers for via-first three-dimensional (3D) interconnect," in Proc. 55th ECTC, Rensselaer Polytech. Inst., Troy, NY, Jun. 2005, pp. 331-336 Vol. 1.
[32] C. K. Lee, T. Chang, Y. Huang, H. Fu, J. H. Huang, Z. Hsiao, J. H. Lau, C. T. Ko, R. Cheng, and K. Kao, "Characterization and Reliability Assessment of Solder Microbumps and Assembly for 3D IC Integration," in Proc. 61th ECTC, Lake Buena Vista, FL, Jun. 2011, pp. 1468-1474.
[33] K. Chen, A. Fan, C. Tan, and R. Reif, "Contact resistance measurement of bonded copper interconnects for three-dimensional integration technology," Electron Device Letters, IEEE, vol. 25, pp. 10-12, 2004.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top