跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 09:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李承翰
研究生(外文):Lee, Cheng-Han
論文名稱:矽基片雙抗諧振反射光波導感測器之元件設計、製作與其特性量測
論文名稱(外文):Design, Fabrication, and Characterization of Si-Based Sensors Based on Dual Antiresonant Reflecting Optical Waveguides
指導教授:黃遠東黃遠東引用關係
指導教授(外文):Huang, Yang-Tung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:70
中文關鍵詞:積體光學奈米光子
外文關鍵詞:integrated opticsnanophotonics
相關次數:
  • 被引用被引用:2
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討創新結構雙抗諧振反射光波導(ARROW)感測器的設計、製造與特性量測。對於一個抗諧振反射光波導結構而言,光場藉由在包覆層之間的抗諧振反射與空氣-導光層界面的全反射,將光侷限於核心層。抗諧振反射光波導結構可將光導引在較低的折射率,並可靈活地設計核心層的折射率與大小使與單模光纖相容。對於雙抗諧振反射光波導而言,則可以藉由控制最大耦合效率來製作一個定向耦合器,或兩個分離的光波導。基於抗諧振反射光波導結構,沒有任何彎折結構的矽基感測器可以被實現。我們利用轉移矩陣法(TMM)與等效折射係數法(EIM)來分析與設計抗諧振反射光波導結構。然後,我們用波束傳輸方法(BPM)來模擬雙抗諧振反射光波導傳感器的傳播特性。我們製作元件並量測特性。測量結果顯示,沒有彎折結構的矽基感測器是可以被實現的。
The design, fabrication, and characterization of novel Si-based sensors based on dual antiresonant reflecting optical waveguides (ARROWs) are proposed. For an ARROW structure, the light is confined within the core layer by antiresonant reflection in the cladding layers and by total internal reflection at the air-core interface. It can guide lightwaves in low-index cores on a high-index substrate, and the refractive index and size of the cores can be flexibly designed to be compatible with single-mode fibers. For dual ARROW, it can operate as a directional coupler or as two decoupled waveguides by controlling maximum coupling efficiency. Based on these structure, Si-based sensors based on dual ARROWs structure without any bending structure can be realized. The characteristics of dual ARROW structures were analyzed with the transfer matrix method (TMM) and the effective index method (EIM). Then, we used the beam propagation method (BPM) to simulate the propagation characteristics of the dual ARROW sensor. The devices were fabricated and characterized. Experimental results show that our Si-based sensors based on dual ARROW structure without any bending structure can be realized.
Chapter 1 Introduction 1
Chapter 2 Analytic Theories and Methods 4
2.1 Transfer Matrix Method 4
2.1.1 TE Modes 5
2.1.2 TM Modes 9
2.2 Effective Index Methods 10
2.3 Eigenmode Propagation Analysis 11
2.4 Beam Propagation Method 12
Chapter 3 Dual Antiresonant Reflecting Optical Waveguide (ARROW) 15
3.1 Introduction 15
3.2 Characteristics of an ARROW Structure 16
3.3 Characteristics of Dual ARROW Structure 19
3.4 Coupling Behavior of Dual ARROW Structures 22
3.5 Summary 24
Chapter 4 Design and Simulation Results of the Si-Based Sensor based on Dual ARROW Structures 25
4.1 Design of the Slab Waveguide Structure 25
4.2 Design of the the Si-Based Sensor based on Dual ARROW Structures 27
4.2.1 Design of the Input Region 28
4.2.2 Design of the Coupling Region 28
4.2.3 Design of the Decoupling Region 29
4.2.4 Design of the Output Region 29
4.3 Simulation Results of the the Si-Based Sensor based on Dual ARROW
Structures 29
4.4 Summary 34
Chapter 5 Device Fabrication 37
5.1 Introduction 37
5.2 Deposition 38
5.3 Lithography 39
5.4 Etching Process and After Etching Inspection (AEI) 41
6 Measurement and Analysis 50
6.1 The Setup of the Optical Measurement System 50
6.2 Measurement of NaCl Solutions 53
6.3 Discussion 54
7 Conclusion 64
Bibliography 66
[1] R. C. Alferness, "Guided-wave devices for optical communication," IEEE J. Quantum Electron., vol. 17, no. 6, pp. 946-959, June 1981.

[2] P. V. Lambeck, "Integrated opto-chemical sensors," Sens. Actuators B, vol. 8, pp. 103-116, 1992.

[3] B. J. Luff, R. D. Harris, J. S. Wilkinson, R. Wilson, and D. J. Schiffrin, "Integrated optical directional coupler biosensor," Opt. Lett., vol. 21, no. 8, pp. 618-620, Apr. 1996.

[4] M. S. Hsu, "Design, Fabrication, and Characterization of Si-Based Dual ARROW Power Splitters," M. S. Thesis, National Chiao Tung University, Hsinchu, Taiwan, R. O. C., 2011.

[5] C. X. Sue, "Design, Fabrication, and Characterization of Si-Based Dual ARROW Power Splitters," M. S. Thesis, National Chiao Tung University, Hsinchu, Taiwan, R. O. C., 2010.

[6] M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett., vol. 49, no. 1, pp. 13-15, Jan. 1986.

[7] N. Fabricius, G. Gauglitz, and J. Ingenhoff, "A gas sensor based on an integrated optical Mach-Zehnder interferometer," Sens. Actuators B, vol. 7, pp. 672-676, 1992.

[8] A. Brandenburg, R. Edelhauser, and F. Hutter, "Integrated optical gas sensors using organically modified silicates as sensitive films," Sens Actuators B, vol. 11, pp. 361-374, 1993.

[9] R. G. Heideman, R. P. H. Kooyman, and J. Greve, "Performance of a highly sensitive optical waveguide Mach-Zehnder interferomter immunosensor," Sens. Actuators B, vol. 10, pp. 209-217, 1993.

[10] G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, "The metrics of surface adsorbed small molecules on the Young's fringe dual-slab waveguide interferometer," J. Phys. D, vol. 37, no. 1, pp. 74-80, Jan. 2004.

[11] T. Tamir (Ed.), Guided-Wave Optoelectronics, Springer-Verlag, 1990.

[12] K. Okamoto, Fundamentals of Optical Waveguides, Academic Press, 2000.

[13] R. M. Knox and P. P. Toulios, "Integrated circuits for millimeter through optical frequency region," in Proc. MRI Symp. Submillimeter Waves, J. Fox, Ed., Brooklyn: Ploytechnic Press, pp. 497-516, 1970.

[14] H. Kogelnik, "Theory of optical waveguides," in Guided-Wave Optoelectronics, T. Tamir, Ed. Berlin, Germany: Springer-Verlag, 1990, ch. 2.

[15] K. S. Chiang, "Analysis of optical fibers by the effective-index method," Appl. Opt., vol. 25, no. 3, pp. 348-354, Feb. 1986.

[16] T. Chung and N. Dagli, "An assessment of finite different beam propagation method," IEEE J. Quantum Electron., vol. 26, no. 8, pp. 1335--1339, Aug. 1990.

[17] C. K. Chen, P. Berini, D. Feng, S. Tanev, and V. P. Tzolov, "Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media," IEEE Photion. Technol. Lett., vol. 7, no. 8, pp. 260-272, 2000.

[18] E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell Syst. Tech. J., vol. 48, no. 9, pp. 2071-2072, 1969.

[19] K. S. Chiang, "Dual effective-index method for the analysis of rectangular waveguides," Appl. Opt., vol. 25, pp. 2169-2174, 1986.

[20] J. J. Deng, "Analysis and disign of antiresonant reflecting optical waveguides with discontinuities," Ph. D. dissertation, National Chiao Tung University, Hsinchu, Taiwan, R. O. C., Oct. 2000.

[21] W. P. Huang, A. Nathan, R. M. Shubair, and Y. L. Chow, "The modal characteristics of ARROW structures," IEEE J. of Lightwave Technol., vol. 10, no. 8, pp. 1015-1022, 1992.

[22] J. J. Deng, "Analsis and design of antiresonant reflecting optical waveguide devices with discontinuities," Ph. D. Dissertation, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., 2000.

[23] Y. H. Chen and Y. T. Huang, "Coupling-efficiency analysis and control of dual antiresonant reflecting optical waveguides," IEEE J. Lightwave Technol., vol. 14, pp. 1507-1513, June 1996.

[24] Toshihiko Baba and Yasuo Kokubun, "Dispersion and Radiation Loss Characteristics of Antiresonant Reflecting Optical Waveguides – Numerical Results and Analytical Expressions," IEEE J. Quantum Electron., vol. 28, no. 7, jul. 1992.

[25] M. Mann, U. Trutschel, C. Wachter, L. Leine, and F. Lederer, "Directional coupler based on antiresonant reflecting optical waveguides," Opt. Lett., vol. 16, no. 11, pp. 805-807, june 1991.

[26] H. F. Taylor and A. Yaiiv, "Guided wave optics," in Proc. IEEE, vol. 62, pp. 1044-1060, Aug. 1974.

[27] D. Marcuse, "The coupling of degenerate modes in two parallel dielectric waveguides," Bell Syst. Tech. J., vol. 50, pp. 1791-1816, 1971.

[28] H. Kogelnik and R. V. Schmidt, "Switched directional couplers with alternating AB," IEEE J. Quantum Electron., vol. QE-12, pp. 396-401, July 1976.

[29] A. Yariv, "Coupled mode theory for guided-wave optics," IEEE J. Quantum Electron., vol. QE-9, pp. 919-933, Sep. 1973.

[30] D. M.arcuse, Light Transmission Optics, Van Nostrand, New York, 1972.

[31] A. Hardy and W. Streifer, "Coupled mode theory of parallel waveguides," IEEE J. Lightwave Technol., vol. LT-3, pp. 1135-1146, Oct. 1985.

[32] Y. Suematsu and K. Kishino, "Coupling coefficient in strongly coupled dielectric waveguides," Rado Science, vol. 12, no. 4, pp. 587-592, July-Aug. 1977.

[33] T. Baba, Y. Kokubun, T. Sakaki, and K. Iga, "Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration," J. Lightwave Technol., vol. 6, no. 9, pp. 1440-1445, Sep. 1988.

[34] A. R. Forouhi and I. Bloomer, "Optical dispersion relatiions for amorphous semiconductors and amorphous dielectrics," Phys. Rev. B, vol. 34, no. 15, pp. 7018-7026, Nov. 1986.

[35] Shih-Hsin Hsu and Yang-Tung Huang, "Design and analysis of Mach-Zehnder interferometer sensors based on dual strip antiresonant reflecting optical waveguide structures," Opt. Lett., vol. 30, no. 21, pp. 2897 – 2899, Nov. 1, 2005.

[36] H. J. W. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck, "On the accuracy of the finite difference method for applications in beam propagation techniques," Opt. Commun., vol. 94, pp. 506-507, 1992.

[37] H. J. W. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck, "New formulation of the beam propagation method based on the slowly varying envelop approximation," Opt. Commun., vol. 97, pp. 301-303, 1993.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top