|
References [1] A. Joullié and P. Christol, "GaSb-based mid-infrared 2-5 mm laser diodes," Comptes Rendus Physique, vol. 4, pp. 621-637, 2003. [2] U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, "Near- and mid-infrared laser monitoring of industrial processes, environment and security applications," Optics and Lasers in Engineering, vol. 44, pp. 699-710, Jul 2006. [3] L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, "The HITRAN 2008 molecular spectroscopic database," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 110, pp. 533-572, 2009. [4] I. Vurgaftman, J. Meyer, and L. Ram-Mohan, "Band parameters for III-V compound semiconductors and their alloys," Journal of Applied Physics, vol. 89, p. 5815, 2001. [5] C. Caneau, A. K. Srivastava, A. G. Dentai, J. L. Zyskind, and M. A. Pollack, "Room-temperature GaInAsSb/AlGaAsSb DH injection lasers at 2.2 mm," Electronics Letters, vol. 21, pp. 815-817, 1985. [6] H. K. Choi and S. J. Eglash, "Room-temperature cw operation at 2.2 mm of GaInAsSb/AlGaAsSb diode lasers grown by molecular beam epitaxy," Applied Physics Letters, vol. 59, pp. 1165-1166, 1991. [7] W. Lei and C. Jagadish, "Lasers and photodetectors for mid-infrared 2-3 mm applications," Journal of Applied Physics, vol. 104, p. 091101, 2008. [8] Z. Yin and X. Tang, "A review of energy bandgap engineering in III-V semiconductor alloys for mid-infrared laser applications," Solid-State Electronics, vol. 51, pp. 6-15, 2007. [9] W. Li, J. Heroux, H. Shao, and W. Wang, "Strain-compensated InGaAsSb/AlGaAsSb mid-infrared quantum-well lasers," Applied Physics Letters, vol. 84, p. 2016, 2004. [10] M. Grau, C. Lin, O. Dier, C. Lauer, and M. C. Amann, "Room-temperature operation of 3.26 mm GaSb-based type-I lasers with quinternary AlGaInAsSb barriers," Applied Physics Letters, vol. 87, p. 241104, 2005. [11] L. Shterengas, G. Kipshidze, T. Hosoda, J. Chen, and G. Belenky, "Diode lasers emitting at 3 mm with 300 mW of continuous-wave output power," Electronics Letters, vol. 45, pp. 942-943, 2009. [12] T. Hosoda, G. Kipshidze, L. Shterengas, and G. Belenky, "Diode lasers emitting near 3.44 mm in continuous-wave regime at 300K," Electronics Letters, vol. 46, pp. 1455-1457, 2010. [13] V. Kristijonas and A. Markus-Christian, "Room-temperature 3.73 µm GaSb-based type-I quantum-well lasers with quinternary barriers," Semiconductor Science and Technology, vol. 27, p. 032001, 2012. [14] W. W. Bewley, C. L. Felix, E. H. Aifer, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, H. Lee, R. U. Martinelli, J. C. Connolly, A. R. Sugg, G. H. Olsen, M. J. Yang, B. R. Bennett, and B. V. Shanabrook, "Above-room-temperature optically pumped midinfrared W lasers," Applied Physics Letters, vol. 73, pp. 3833-3835, 1998. [15] W. W. Bewley, C. L. Felix, I. Vurgaftman, D. W. Stokes, E. H. Aifer, L. J. Olafsen, J. R. Meyer, M. J. Yang, B. V. Shanabrook, H. Lee, R. U. Martinelli, and A. R. Sugg, "High-temperature continuous-wave 3-6.1 mm "W'' lasers with diamond-pressure-bond heat sinking," Applied Physics Letters, vol. 74, pp. 1075-1077, 1999. [16] D. W. Stokes, L. J. Olafsen, W. W. Bewley, I. Vurgaftman, C. L. Felix, E. H. Aifer, J. R. Meyer, and M. J. Yang, "Type-II quantum-well "W'' lasers emitting at l=5.4-7.3 mm," Journal of Applied Physics, vol. 86, pp. 4729-4733, 1999. [17] C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, C. S. Kim, M. Kim, and J. R. Meyer, "High-power continuous-wave midinfrared type-II "W'' diode lasers," Applied Physics Letters, vol. 86, p. 211105, 2005. [18] J. L. Bradshaw, R. Q. Yang, J. D. Bruno, J. T. Pham, and D. E. Wortman, "High-efficiency interband cascade lasers with peak power exceeding 4 W/facet," Applied Physics Letters, vol. 75, pp. 2362-2364, 1999. [19] M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser emitting at l = 3.75 mm in continuous wave above room temperature," Applied Physics Letters, vol. 92, p. 191110, 2008. [20] I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, "Mid-infrared interband cascade lasers operating at ambient temperatures," New Journal of Physics, vol. 11, p. 125015, 2009. [21] A. Bauer, F. Langer, M. Dallner, M. Kamp, M. Motyka, G. Sek, K. Ryczko, J. Misiewicz, S. Hofling, and A. Forchel, "Emission wavelength tuning of interband cascade lasers in the 3-4 mm spectral range," Applied Physics Letters, vol. 95, p. 251103, 2009. [22] J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournie, "Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si," Applied Physics Letters, vol. 99, pp. 121113-3, 2011. [23] J. B. Rodriguez, L. Cerutti, and E. Tournie, "GaSb-based, 2.2 mm type-I laser fabricated on GaAs substrate operating continuous wave at room temperature," Applied Physics Letters, vol. 94, p. 023506, 2009. [24] G. R. Nash, S. J. B. Przeslak, S. J. Smith, G. de Valicourt, A. D. Andreev, P. J. Carrington, M. Yin, A. Krier, S. D. Coomber, L. Buckle, M. T. Emeny, and T. Ashley, "Midinfrared GaInSb/AlGaInSb quantum well laser diodes operating above 200 K," Applied Physics Letters, vol. 94, p. 091111, 2009. [25] T. Sato, M. Mitsuhara, N. Nunoya, T. Fujisawa, K. Kasaya, E. Kano, and Y. Kondo, "2.33-mu m-wavelength distributed feedback lasers with InAs-In0.53Ga0.47As multiple-quantum wells on InP substrates," IEEE Photonics Technology Letters, vol. 20, pp. 1045-1047, 2008. [26] I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, "InP-based dilute-nitride mid-infrared type-II ``W'' quantum-well lasers," Journal of Applied Physics, vol. 96, pp. 4653-4655, 2004. [27] J. Y. T. Huang, D. R. Xu, L. J. Mawst, T. F. Kuech, I. Vurgaftman, and J. R. Meyer, "GaAsSbN-GaAsSb-InP type-II "W" quantum wells for mid-IR emission," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, pp. 1065-1073, 2007. [28] J. Huang, L. Mawst, T. Kuech, X. Song, S. Babcock, C. Kim, I. Vurgaftman, J. Meyer, and A. Holmes, "Design and characterization of strained InGaAs/GaAsSb type-II ¡¥W¡¦quantum wells on InP substrates for mid-IR emission," Journal of Physics D: Applied Physics, vol. 42, p. 025108, 2009. [29] S. Sprengel, C. Grasse, K. Vizbaras, T. Gruendl, and M.-C. Amann, "Up to 3 mm light emission on InP substrate using GaInAs/GaAsSb type-II quantum wells," Applied Physics Letters, vol. 99, p. 221109, 2011. [30] M. Nobile, H. Detz, E. Mujagic, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, "Midinfrared intersubband absorption in InGaAs/GaAsSb multiple quantum wells," Applied Physics Letters, vol. 95, p. 041102, 2009. [31] C. Baile, A. L. Holmes, W. Y. Jiang, and J. Yuan, "Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes," Numerical Simulation of Optoelectronic Devices (NUSOD) 11th International Conference, pp. 203-204, 2011. [32] J. Hu, X. G. Xu, J. A. H. Stotz, S. P. Watkins, A. E. Curzon, M. L. W. Thewalt, N. Matine, and C. R. Bolognesi, "Type II photoluminescence and conduction band offsets of GaAsSb/InGaAs and GaAsSb/InP heterostructures grown by metalorganic vapor phase epitaxy," Applied Physics Letters, vol. 73, pp. 2799-2801, 1998. [33] M. Nobile, P. Klang, E. Mujagic, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, "Quantum cascade laser utilising aluminium-free material system: InGaAs/GaAsSb lattice-matched to InP," Electronics Letters, vol. 45, pp. 1031-1033, 2009. [34] T. Mozume and N. Georgiev, "Interface control of InGaAs/AlAsSb heterostructures," Thin Solid Films, vol. 380, pp. 249-251, 2000. [35] A. Yamamoto, Y. Kawamura, H. Naito, and N. Inoue, "Optical properties of GaAs0.5Sb0.5 and In0.53Ga0.47As/GaAs0.5Sb0.5 type II single hetero-structures lattice-matched to InP substrates grown by molecular beam epitaxy," Journal of Crystal Growth, vol. 201–202, pp. 872-876, 1999. [36] C. G. Van de Walle, "Band lineups and deformation potentials in the model-solid theory," Physical Review B, vol. 39, pp. 1871-1883, 1989. [37] M. P. C. M. Krijn, "Heterojunction band offsets and effective masses in III-V quaternary alloys," Semiconductor Science and Technology, vol. 6, p. 27, 1991. [38] S. L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995). [39] A. Zakharova, S. T. Yen, and K. A. Chao, "Strain-induced semimetal-semiconductor transition in InAs/GaSb broken-gap quantum wells," Physical Review B, vol. 66, p. 085312, 2002. [40] B. A. Foreman, "Elimination of spurious solutions from eight-band k⋅p theory," Physical Review B, vol. 56, pp. R12748-R12751, 1997. [41] M. Sugawara, "Theoretical calculation of optical gain in InxGa1-xAs/InP quantum wells under biaxially compressive and tensile strain," Applied Physics Letters, vol. 60, pp. 1842-1844, 1992. [42] M. Sugawara and S. Yamazaki, "Theoretical calculation of optical gain and threshold current density in strained In1-xGaxAs/InP quantum-well lasers using strain-dependent conduction-band and valence-band structures (invited paper)," Microwave and Optical Technology Letters, vol. 7, pp. 107-113, 1994. [43] R. Kaspi, A. P. Ongstad, G. C. Dente, J. R. Chavez, M. L. Tilton, and D. M. Gianardi, "High performance optically pumped antimonide lasers operating in the 2.4-9.3 mm wavelength range," Applied Physics Letters, vol. 88, p. 041122, 2006. [44] T. C. McAlpine, K. R. Greene, M. R. Santilli, L. J. Olafsen, W. W. Bewley, C. L. Felix, I. Vurgaftman, J. R. Meyer, H. Lee, and R. U. Martinelli, "Resonantly pumped optical pumping injection cavity lasers," Journal of Applied Physics, vol. 96, pp. 4751-4754, 2004. [45] L. J. Olafsen and T. C. McAlpine, "Transparency pump intensity and differential gain in resonantly pumped W optical pumping injection cavity lasers," Journal of Applied Physics, vol. 108, p. 053106, 2010. [46] R. Kaspi, A. P. Ongstad, G. C. Dente, M. L. Tilton, and A. Tauke-Pedretti, "Optically Pumped Midinfrared Laser With Simultaneous Dual-Wavelength Emission," IEEE Photonics Technology Letters, vol. 20, pp. 1467-1469, 2008. [47] S. D. Wu, L. W. Guo, W. X. Wang, Z. H. Li, X. Z. Shang, H. Y. Hu, Q. Huang, and J. M. Zhou, "The incorporation behavior of arsenic and antimony in GaAsSb/GaAs grown by solid source molecular beam epitaxy," Journal of Crystal Growth, vol. 270, pp. 359-363, 2004. [48] K. Biermann, A. Hase, and H. Künzel, "Optical pyrometry for in situ control of MBE growth of (Al,Ga)As1−xSbx compounds on InP," Journal of Crystal Growth, vol. 201–202, pp. 36-39, 1999. [49] L. Mawst, J. Huang, D. Xu, J. Yeh, G. Tsvid, T. Kuech, and N. Tansu, "MOCVD-Grown Dilute Nitride Type II Quantum Wells," IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, pp. 979-991, 2008. [50] J. Klem, O. Blum, S. Kurtz, I. Fritz, and K. Choquette, "GaAsSb/InGaAs type-II quantum wells for long-wavelength lasers on GaAs substrates," Journal of Vacuum Science &; Technology B: Microelectronics and Nanometer Structures, vol. 18, p. 1605, 2000. [51] C. Renard, X. Marcadet, J. Massies, and O. Parillaud, "Molecular beam epitaxy of (Ga,Al)AsSb alloys on InP(001) substrates," Journal of Crystal Growth, vol. 278, pp. 193-197, 2005. [52] N. N. Ledentsov, J. Böhrer, M. Beer, F. Heinrichsdorff, M. Grundmann, D. Bimberg, S. V. Ivanov, B. Y. Meltser, S. V. Shaposhnikov, I. N. Yassievich, N. N. Faleev, P. S. Kop'ev, and Z. I. Alferov, "Radiative states in type-II GaSb/GaAs quantum wells," Physical Review B, vol. 52, p. 14058, 1995. [53] M. C. Lo, S. J. Huang, C. P. Lee, S. D. Lin, and S. T. Yen, "Discrete monolayer light emission from GaSb wetting layer in GaAs," Applied Physics Letters, vol. 90, p. 243102, 2007. [54] A. Ait-Ouali, R. Yip, J. Brebner, and R. Masut, "Strain relaxation and exciton localization effects on the Stokes shift in InAsP/InP multiple quantum wells," Journal of Applied Physics, vol. 83, p. 3153, 1998. [55] M. Dinu, J. E. Cunningham, F. Quochi, and J. Shah, "Optical properties of strained antimonide-based heterostructures," Journal of Applied Physics, vol. 94, pp. 1506-1512, 2003. [56] J. Christen and D. Bimberg, "Line shapes of intersubband and excitonic recombination in quantum wells: Influence of final-state interaction, statistical broadening, and momentum conservation," Physical Review B, vol. 42, p. 7213, 1990. [57] C. L. Felix, J. R. Meyer, I. Vurgaftman, C. H. Lin, S. J. Murry, D. Zhang, and S. S. Pei, "High-temperature 4.5-mm type-II quantum-well laser with Auger suppression," IEEE Photonics Technology Letters, vol. 9, pp. 734-736, 1997. [58] J. R. Meyer, C. L. Felix, W. W. Bewley, I. Vurgaftman, E. H. Aifer, L. J. Olafsen, J. R. Lindle, C. A. Hoffman, M. J. Yang, B. R. Bennett, B. V. Shanabrook, H. Lee, C. H. Lin, S. S. Pei, and R. H. Miles, "Auger coefficients in type-II InAs/Ga1-xInxSb quantum wells," Applied Physics Letters, vol. 73, pp. 2857-2859, 1998. [59] A. Krier, D. Chubb, S. E. Krier, M. Hopkinson, and G. Hill, "Light sources for wavelengths >2 mm grown by MBE on InP using a strain relaxed buffer," IEE Proceeding-Optoelectronics, vol. 145, pp. 292-296, 1998. [60] J. Kirch, T. Garrod, S. Kim, J. H. Park, J. C. Shin, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, I. Vurgaftman, J. R. Meyer, and T.-S. Kuan, "InAsyP1−y metamorphic buffer layers on InP substrates for mid-IR diode lasers," Journal of Crystal Growth, vol. 312, pp. 1165-1169, 2010. [61] F. M. Mohammedy, O. Hulko, B. J. Robinson, D. A. Thompson, M. J. Deen, and J. G. Simmons, "Growth and characterization of GaAsSb metamorphic samples on an InP substrate," Journal of Vacuum Science &; Technology A: Vacuum, Surfaces, and Films, vol. 24, pp. 587-590, 2006. [62] Y. Zhang, Y. Gu, Z. Tian, A. Li, X. Zhu, and Y. Zheng, "Wavelength extended 2.4 mm heterojunction InGaAs photodiodes with InAlAs cap and linearly graded buffer layers suitable for both front and back illuminations," Infrared Physics &; Technology, vol. 51, pp. 316-321, 2008. [63] A. P. Ongstad, R. Kaspi, G. C. Dente, M. L. Tilton, and J. Chavez, "Midinfrared, optically pumped, unstable resonator lasers," Applied Physics Letters, vol. 90, p. 191107, 2007. [64] A. P. Ongstad, R. Kaspi, A. Tauke-Pedretti, J. C. Chavez, M. L. Tilton, and G. C. Dente, "Controlling the outcoupled power in a dual wavelength optically pumped semiconductor laser," Applied Physics Letters, vol. 94, p. 241111, 2009. [65] X. He, S. Benoit, S. R. Brueck, and R. Kaspi, "Widely Tunable Optically Pumped Mid-IR DFB Laser," Lasers and Electro-Optics (CLEO) Conference, p. CF1K.7, May 2012. [66] S.-Y. Yang and J.-B. Yoo, "Characteristics of Zn diffusion in planar and patterned InP substrate using Zn3P2 film and rapid thermal annealing process," Surface and Coatings Technology, vol. 131, pp. 66-69, 2000. [67] J. W. Shi, T. J. Hung, Y. Y. Chen, Y. S. Wu, L. Wei, and Y. Ying-Jay, "InP-Based Transverse Junction Light-Emitting Diodes for White-Light Generation at Infrared Wavelengths," Photonics Technology Letters, IEEE, vol. 18, pp. 2053-2055, 2006. [68] T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, "GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating," Opt. Express, vol. 19, pp. 1884-1891, 2011.
|