跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 20:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘建宏
研究生(外文):Pan, Chien-Hung
論文名稱:第二型砷化銦鎵/砷銻化鎵“W”量子井之光學特性及光激發中紅外線雷射之研究
論文名稱(外文):Optical Characteristics of Type-II InGaAs/GaAsSb “W”Quantum Wells and Optically-Pumped Mid Infrared Lasers
指導教授:李建平李建平引用關係
指導教授(外文):Lee, Chien-Ping
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:97
中文關鍵詞:中紅外線雷射第二型異質接面砷化銦鎵砷銻化鎵磷化銦基材"W"型量子井k.p理論計算光增益計算
外文關鍵詞:mid infrared laserstype-II heterostructuresInGaAsGaAsSbInP-based"W" type quantum wellk.p theoryoptical gain calculations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
此篇論文主要貢獻在探索與開發半導體中紅外線光源,有別於一般較昂貴且不成熟的銻化鎵及砷化銦基材,我們使用較普遍且散熱較佳的磷化銦基板成長第二型砷化銦鎵/砷銻化鎵 “W”量子井。不同於一般第二型電洞的量子井,此“W”結構藉由阻擋層(barrier layer)對電子侷限來增加電子電洞波函數耦合並提升光躍遷率。
我們透過理論計算改變各結構參數(例如量子井厚度及砷銻化鎵的比例成分)能得到2到3微米的發光範圍並且得知發光波長的延伸與光耀遷率的強度有一交替關係(trade-off),亦即發光波長越長通常伴隨光躍遷率的下降,此為“W”結構本質的特性。而在給定一個發光波長下,較薄量子井厚度及較高銻成分的結構設計組合能提供較高的電子電洞耦合。我們更進一步用八個能帶的k.p理論來計算能帶關係及不同載子濃度下的材料光增益,在適當的設計下單一層量子井增益即能達到103cm-1,此已符合一般雷射元件的需求。我們也顯示出藉由適當增加電洞量子井的壓縮應變,能使電子電洞的等效質量較平衡進而降低透明載子濃度(transparency carrier density)及提高材料光增益。
  在實驗上,我們使用分子束磊在(001)磷化銦基板上成長一系列的樣品,系統性地分別改變砷化銦鎵、砷銻化鎵的厚度以及砷銻化鎵合金中銻的比例,在低溫下樣品的光激發螢光光譜可顯示出2-2.5微米的波長範圍,其螢光強度與發光波長如前所述有一交換關係,並且如理論預測其螢光積分強度與計算的電子電洞波函數耦合平方成正比。樣品品質表現良好,螢光積分強度從低溫到室溫只約下降了10倍。在室溫下我們首次展示出其波長能超過3微米。我們透過變功率光激發螢光實驗來研究“W”量子井中第二型能帶排列的特徵,光譜的峰值位置隨激發功率增加而藍移,但不同於一般第二型量子井其藍移量並未與激發光功率的1/3次方成正比,對此現象我們提出局域的能態填充(localized states band filling)來解釋,其局域能態來自於合金成分的不均勻及磊晶層表面起伏所致,模擬結果與實驗值可以得到良好的吻合。
  最後我們首次成功的展示室溫操作光激發2.56微米的“W”量子井中紅外線雷射,此為所知在磷化銦基板上波長最長的能帶間躍遷(interband transition)雷射,其閥值功率密度約為40kW/cm2,其特徵溫度T0在操作溫度小於250K時為487.8K,而從250K到室溫其T0為41.8K,此劇烈的T0變化及較小的室溫T0我們認為是歐傑複合所導致,經由不同雷射腔長的實驗萃取波導光損耗以及理論計算波導模態增益,我們得以估計歐傑常數約為1.67 x10-27 cm6/s。
最後我們提出並評估一方法能將“W”量子井發光波長延升至3-5微米波段,此即成長緩衝層將晶格常數轉至~5.94Ao,並接著使用In0.7Ga0.3As/GaSb/In0.7Al0.3As “W” 量子井的結構設計。

This dissertation mainly dedicates to explore and develop mid-infrared light sources. In difference with usual expensive and immature InAs-based and GaSb-based materials, we utilized more popular, better thermal conductive InP substrates and employed type-II InGaAs/GaAsSb “W” type quantum wells (QWs). Distinguishing from general type-II hole quantum well, the “W” structure includes barrier layers to confine electrons and to increase electron-hole wavefunction overlap, hence the optical transition rate.
Through theoretical calculations changed with structure parameters (such as QWs thickness and GaAsSb composition), a range of 2-3µm emission wavelength can be derived. It also shows a trade-off situation between the extending of emission wavelength and the intensity of optical transition rate, meaning a longer emission wavelength generally accompanied with a decreased optical transition rate, which is an intrinsic feature for the “W” structure. However, at a given emission wavelength, the design with thinner InGaAs and GaAsSb layers and a higher Sb content in GaAsSb is more desirable, which could provide of a larger electron-hole wavefunction overlap. We further used the eight-band k.p theory to calculate the E-k relation and material gain as a function of carrier density. With a proper design, the material gain of a single “W” QW is able to reach above 10^3 cm-1, which is sufficient for general mid-IR lasers applications. We also pointed out that adopting proper compressive strain in hole QW makes a more balanced electron and hole masses that could reduce the transparency carrier density and increase the material gain.
In experiments, we grew a series of samples systematically varied with thickness of InGaAs, thickness of GaAsSb and Sb mole fraction in GaAsSb. The photoluminescence (PL) spectra of samples cover the range of 2-2.5 µm at low temperature. The trade-off between optical transition rate and wavelength emission is confirmed as the prediction of the theoretical calculations, where the integrated PL intensity is proportional to the square of electron-hole wavefunction overlap. The samples showed good optical quality that integrated PL intensity only decreases an order from cryogenic temperature to room temperature (RT). For the first time we demonstrated PL emission wavelength longer than 3 µm at RT by the InP-based “W” structure. The type-II band alignment in the “W” structure has been characterized by the power dependent PL measurements. The peak position shifts to shorter wavelength as the excitation power (Pex) increases. It was found the amount of energy shifts does not follow the Pex^1/3 law as most type II structures. The localized states filling effect due to the surface roughness and alloy fluctuation is proposed to explain the observed phenomenon. The calculated results agree well with the experiment results.
For the first time we demonstrated the room temperature optically-pumped mid-IR “W” type lasers on InP substrates. The lasing wave length is 2.56 µm, which is known as the longest for the InP-based interband transition, with a threshold pumping power density of ~40kW/cm2. The laser shows a characteristic temperature (T0) of 487.8K as operated below 250K and a T0 of 41.8K as operated near room temperature. This abrupt T0 change and the small T0 at room temperature are considered due to the dominated Auger processes. An Auger coefficient of 1.67x10-27 cm^6/s was estimated via different laser cavity length studies for the extraction of waveguide optical loss and theoretical calculations for the waveguide modal gain.
Finally, we propose and evaluate an approach capable of extending the “W” QWs emission wavelengths into 3-5µm regime, which uses a metamorphic buffer layer to shift the lattice constant to ~5.94Å and then grows the designed “W” QW structure of In0.7Ga0.3As/ GaSb/In0.7Al0.3As.

Chapter 1: Introduction………………………………………………1
1.1 Mid infrared applications…………………………………………1
1.2 A brief review of III-V semiconductor mid-IR lasers……3
1.3 Research motivation……………………………………………8
1.4 Organization of this dissertation……………………………9

Chapter 2: Theoretical studies of InGaAs/GaAsSb type-II “W” type quantum wells on InP substrates……………………………………………11
2.1 Band alignments of “W” type quantum well………………………11
2.2 The trade-off feature for the “W” type quantum well explored by one band effective mass approximation………………….20
2.3 Energy band dispersion relations and material gain simulations of “W” quantum wells based on the eight band k.p theory…………25
2.4 Summary……………………………………………………39

Chapter 3: Experiment techniques……………………………40
3.1 Molecular beam epitaxy………………………………………40
3.1-1 Chambers’ configurations, utilities and functions…………42
3.1-2 Calibrations of growth rate and doping concentration………44
3.1-3 Sample growth procedure……………………………………45
3.2 Material characteristics analysis……………………………47
3.2-1 High resolution X-ray diffraction system……………………47
3.2-2 Photoluminescence Spectroscopy……………………………48
3.2-3 The setup for optically-pumped lasers measurement…………49

Chapter 4: 2~3 µm mid infrared light sources using InGaAs/GaAsSb “W” type quantum wells on InP substrates……………………………52
4.1 The growth of ternary alloys lattice-matched to InP substrate..52
4.2 The growth condition dependence of Sb fraction in GaAsSb alloy..54
4.3 “W” type quantum well sample growth……………………………56
4.4 Photoluminescence results and discussion…………………………58
4.5 Brief conclusions and light emission over 3µm at room temperature......65

Chapter 5: Room temperature optically-pumped mid-IR lasers with “W” type InGaAs/GaAsSb quantum wells on InP substrates……………….67
5.1 The structure of type-II “W” QWs mid-IR laser…............67
5.2 E-k band structure calculation and waveguide simulation…………68
5.3 Experimental results and laser characteristics discussion………70
5.4 Conclusions…………………………………………………77

Chapter 6: Conclusions and Future works…………………………………78
6.1 Conclusions of present studies……………………………….............78
6.2 Suggestions for future works………………………………………80
6.2-1 Extending the InP-based “W” QWs into 3-5 □m regime………80
6.2-2 Dual wavelength lasing of optically-pumped mid-IR lasers
and fabrication of tunable optically-pumped DFB laser.....82
6.2-3 Fabrication of electrical injection InP-based “W” mid-IR lasers.....89


Reference……………………………………………………………………90
Vita……………………………………………………………………………96
Publication list…………………………………………………………97

References
[1] A. Joullié and P. Christol, "GaSb-based mid-infrared 2-5 mm laser diodes," Comptes Rendus Physique, vol. 4, pp. 621-637, 2003.
[2] U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, "Near- and mid-infrared laser monitoring of industrial processes, environment and security applications," Optics and Lasers in Engineering, vol. 44, pp. 699-710, Jul 2006.
[3] L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, "The HITRAN 2008 molecular spectroscopic database," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 110, pp. 533-572, 2009.
[4] I. Vurgaftman, J. Meyer, and L. Ram-Mohan, "Band parameters for III-V compound semiconductors and their alloys," Journal of Applied Physics, vol. 89, p. 5815, 2001.
[5] C. Caneau, A. K. Srivastava, A. G. Dentai, J. L. Zyskind, and M. A. Pollack, "Room-temperature GaInAsSb/AlGaAsSb DH injection lasers at 2.2 mm," Electronics Letters, vol. 21, pp. 815-817, 1985.
[6] H. K. Choi and S. J. Eglash, "Room-temperature cw operation at 2.2 mm of GaInAsSb/AlGaAsSb diode lasers grown by molecular beam epitaxy," Applied Physics Letters, vol. 59, pp. 1165-1166, 1991.
[7] W. Lei and C. Jagadish, "Lasers and photodetectors for mid-infrared 2-3 mm applications," Journal of Applied Physics, vol. 104, p. 091101, 2008.
[8] Z. Yin and X. Tang, "A review of energy bandgap engineering in III-V semiconductor alloys for mid-infrared laser applications," Solid-State Electronics, vol. 51, pp. 6-15, 2007.
[9] W. Li, J. Heroux, H. Shao, and W. Wang, "Strain-compensated InGaAsSb/AlGaAsSb mid-infrared quantum-well lasers," Applied Physics Letters, vol. 84, p. 2016, 2004.
[10] M. Grau, C. Lin, O. Dier, C. Lauer, and M. C. Amann, "Room-temperature operation of 3.26 mm GaSb-based type-I lasers with quinternary AlGaInAsSb barriers," Applied Physics Letters, vol. 87, p. 241104, 2005.
[11] L. Shterengas, G. Kipshidze, T. Hosoda, J. Chen, and G. Belenky, "Diode lasers emitting at 3 mm with 300 mW of continuous-wave output power," Electronics Letters, vol. 45, pp. 942-943, 2009.
[12] T. Hosoda, G. Kipshidze, L. Shterengas, and G. Belenky, "Diode lasers emitting near 3.44 mm in continuous-wave regime at 300K," Electronics Letters, vol. 46, pp. 1455-1457, 2010.
[13] V. Kristijonas and A. Markus-Christian, "Room-temperature 3.73 µm GaSb-based type-I quantum-well lasers with quinternary barriers," Semiconductor Science and Technology, vol. 27, p. 032001, 2012.
[14] W. W. Bewley, C. L. Felix, E. H. Aifer, I. Vurgaftman, L. J. Olafsen, J. R. Meyer, H. Lee, R. U. Martinelli, J. C. Connolly, A. R. Sugg, G. H. Olsen, M. J. Yang, B. R. Bennett, and B. V. Shanabrook, "Above-room-temperature optically pumped midinfrared W lasers," Applied Physics Letters, vol. 73, pp. 3833-3835, 1998.
[15] W. W. Bewley, C. L. Felix, I. Vurgaftman, D. W. Stokes, E. H. Aifer, L. J. Olafsen, J. R. Meyer, M. J. Yang, B. V. Shanabrook, H. Lee, R. U. Martinelli, and A. R. Sugg, "High-temperature continuous-wave 3-6.1 mm "W'' lasers with diamond-pressure-bond heat sinking," Applied Physics Letters, vol. 74, pp. 1075-1077, 1999.
[16] D. W. Stokes, L. J. Olafsen, W. W. Bewley, I. Vurgaftman, C. L. Felix, E. H. Aifer, J. R. Meyer, and M. J. Yang, "Type-II quantum-well "W'' lasers emitting at l=5.4-7.3 mm," Journal of Applied Physics, vol. 86, pp. 4729-4733, 1999.
[17] C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, C. S. Kim, M. Kim, and J. R. Meyer, "High-power continuous-wave midinfrared type-II "W'' diode lasers," Applied Physics Letters, vol. 86, p. 211105, 2005.
[18] J. L. Bradshaw, R. Q. Yang, J. D. Bruno, J. T. Pham, and D. E. Wortman, "High-efficiency interband cascade lasers with peak power exceeding 4 W/facet," Applied Physics Letters, vol. 75, pp. 2362-2364, 1999.
[19] M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser emitting at l = 3.75 mm in continuous wave above room temperature," Applied Physics Letters, vol. 92, p. 191110, 2008.
[20] I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, "Mid-infrared interband cascade lasers operating at ambient temperatures," New Journal of Physics, vol. 11, p. 125015, 2009.
[21] A. Bauer, F. Langer, M. Dallner, M. Kamp, M. Motyka, G. Sek, K. Ryczko, J. Misiewicz, S. Hofling, and A. Forchel, "Emission wavelength tuning of interband cascade lasers in the 3-4 mm spectral range," Applied Physics Letters, vol. 95, p. 251103, 2009.
[22] J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournie, "Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si," Applied Physics Letters, vol. 99, pp. 121113-3, 2011.
[23] J. B. Rodriguez, L. Cerutti, and E. Tournie, "GaSb-based, 2.2 mm type-I laser fabricated on GaAs substrate operating continuous wave at room temperature," Applied Physics Letters, vol. 94, p. 023506, 2009.
[24] G. R. Nash, S. J. B. Przeslak, S. J. Smith, G. de Valicourt, A. D. Andreev, P. J. Carrington, M. Yin, A. Krier, S. D. Coomber, L. Buckle, M. T. Emeny, and T. Ashley, "Midinfrared GaInSb/AlGaInSb quantum well laser diodes operating above 200 K," Applied Physics Letters, vol. 94, p. 091111, 2009.
[25] T. Sato, M. Mitsuhara, N. Nunoya, T. Fujisawa, K. Kasaya, E. Kano, and Y. Kondo, "2.33-mu m-wavelength distributed feedback lasers with InAs-In0.53Ga0.47As multiple-quantum wells on InP substrates," IEEE Photonics Technology Letters, vol. 20, pp. 1045-1047, 2008.
[26] I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, "InP-based dilute-nitride mid-infrared type-II ``W'' quantum-well lasers," Journal of Applied Physics, vol. 96, pp. 4653-4655, 2004.
[27] J. Y. T. Huang, D. R. Xu, L. J. Mawst, T. F. Kuech, I. Vurgaftman, and J. R. Meyer, "GaAsSbN-GaAsSb-InP type-II "W" quantum wells for mid-IR emission," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, pp. 1065-1073, 2007.
[28] J. Huang, L. Mawst, T. Kuech, X. Song, S. Babcock, C. Kim, I. Vurgaftman, J. Meyer, and A. Holmes, "Design and characterization of strained InGaAs/GaAsSb type-II ¡¥W¡¦quantum wells on InP substrates for mid-IR emission," Journal of Physics D: Applied Physics, vol. 42, p. 025108, 2009.
[29] S. Sprengel, C. Grasse, K. Vizbaras, T. Gruendl, and M.-C. Amann, "Up to 3 mm light emission on InP substrate using GaInAs/GaAsSb type-II quantum wells," Applied Physics Letters, vol. 99, p. 221109, 2011.
[30] M. Nobile, H. Detz, E. Mujagic, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, "Midinfrared intersubband absorption in InGaAs/GaAsSb multiple quantum wells," Applied Physics Letters, vol. 95, p. 041102, 2009.
[31] C. Baile, A. L. Holmes, W. Y. Jiang, and J. Yuan, "Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes," Numerical Simulation of Optoelectronic Devices (NUSOD) 11th International Conference, pp. 203-204, 2011.
[32] J. Hu, X. G. Xu, J. A. H. Stotz, S. P. Watkins, A. E. Curzon, M. L. W. Thewalt, N. Matine, and C. R. Bolognesi, "Type II photoluminescence and conduction band offsets of GaAsSb/InGaAs and GaAsSb/InP heterostructures grown by metalorganic vapor phase epitaxy," Applied Physics Letters, vol. 73, pp. 2799-2801, 1998.
[33] M. Nobile, P. Klang, E. Mujagic, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, "Quantum cascade laser utilising aluminium-free material system: InGaAs/GaAsSb lattice-matched to InP," Electronics Letters, vol. 45, pp. 1031-1033, 2009.
[34] T. Mozume and N. Georgiev, "Interface control of InGaAs/AlAsSb heterostructures," Thin Solid Films, vol. 380, pp. 249-251, 2000.
[35] A. Yamamoto, Y. Kawamura, H. Naito, and N. Inoue, "Optical properties of GaAs0.5Sb0.5 and In0.53Ga0.47As/GaAs0.5Sb0.5 type II single hetero-structures lattice-matched to InP substrates grown by molecular beam epitaxy," Journal of Crystal Growth, vol. 201–202, pp. 872-876, 1999.
[36] C. G. Van de Walle, "Band lineups and deformation potentials in the model-solid theory," Physical Review B, vol. 39, pp. 1871-1883, 1989.
[37] M. P. C. M. Krijn, "Heterojunction band offsets and effective masses in III-V quaternary alloys," Semiconductor Science and Technology, vol. 6, p. 27, 1991.
[38] S. L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995).
[39] A. Zakharova, S. T. Yen, and K. A. Chao, "Strain-induced semimetal-semiconductor transition in InAs/GaSb broken-gap quantum wells," Physical Review B, vol. 66, p. 085312, 2002.
[40] B. A. Foreman, "Elimination of spurious solutions from eight-band k⋅p theory," Physical Review B, vol. 56, pp. R12748-R12751, 1997.
[41] M. Sugawara, "Theoretical calculation of optical gain in InxGa1-xAs/InP quantum wells under biaxially compressive and tensile strain," Applied Physics Letters, vol. 60, pp. 1842-1844, 1992.
[42] M. Sugawara and S. Yamazaki, "Theoretical calculation of optical gain and threshold current density in strained In1-xGaxAs/InP quantum-well lasers using strain-dependent conduction-band and valence-band structures (invited paper)," Microwave and Optical Technology Letters, vol. 7, pp. 107-113, 1994.
[43] R. Kaspi, A. P. Ongstad, G. C. Dente, J. R. Chavez, M. L. Tilton, and D. M. Gianardi, "High performance optically pumped antimonide lasers operating in the 2.4-9.3 mm wavelength range," Applied Physics Letters, vol. 88, p. 041122, 2006.
[44] T. C. McAlpine, K. R. Greene, M. R. Santilli, L. J. Olafsen, W. W. Bewley, C. L. Felix, I. Vurgaftman, J. R. Meyer, H. Lee, and R. U. Martinelli, "Resonantly pumped optical pumping injection cavity lasers," Journal of Applied Physics, vol. 96, pp. 4751-4754, 2004.
[45] L. J. Olafsen and T. C. McAlpine, "Transparency pump intensity and differential gain in resonantly pumped W optical pumping injection cavity lasers," Journal of Applied Physics, vol. 108, p. 053106, 2010.
[46] R. Kaspi, A. P. Ongstad, G. C. Dente, M. L. Tilton, and A. Tauke-Pedretti, "Optically Pumped Midinfrared Laser With Simultaneous Dual-Wavelength Emission," IEEE Photonics Technology Letters, vol. 20, pp. 1467-1469, 2008.
[47] S. D. Wu, L. W. Guo, W. X. Wang, Z. H. Li, X. Z. Shang, H. Y. Hu, Q. Huang, and J. M. Zhou, "The incorporation behavior of arsenic and antimony in GaAsSb/GaAs grown by solid source molecular beam epitaxy," Journal of Crystal Growth, vol. 270, pp. 359-363, 2004.
[48] K. Biermann, A. Hase, and H. Künzel, "Optical pyrometry for in situ control of MBE growth of (Al,Ga)As1−xSbx compounds on InP," Journal of Crystal Growth, vol. 201–202, pp. 36-39, 1999.
[49] L. Mawst, J. Huang, D. Xu, J. Yeh, G. Tsvid, T. Kuech, and N. Tansu, "MOCVD-Grown Dilute Nitride Type II Quantum Wells," IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, pp. 979-991, 2008.
[50] J. Klem, O. Blum, S. Kurtz, I. Fritz, and K. Choquette, "GaAsSb/InGaAs type-II quantum wells for long-wavelength lasers on GaAs substrates," Journal of Vacuum Science &; Technology B: Microelectronics and Nanometer Structures, vol. 18, p. 1605, 2000.
[51] C. Renard, X. Marcadet, J. Massies, and O. Parillaud, "Molecular beam epitaxy of (Ga,Al)AsSb alloys on InP(001) substrates," Journal of Crystal Growth, vol. 278, pp. 193-197, 2005.
[52] N. N. Ledentsov, J. Böhrer, M. Beer, F. Heinrichsdorff, M. Grundmann, D. Bimberg, S. V. Ivanov, B. Y. Meltser, S. V. Shaposhnikov, I. N. Yassievich, N. N. Faleev, P. S. Kop'ev, and Z. I. Alferov, "Radiative states in type-II GaSb/GaAs quantum wells," Physical Review B, vol. 52, p. 14058, 1995.
[53] M. C. Lo, S. J. Huang, C. P. Lee, S. D. Lin, and S. T. Yen, "Discrete monolayer light emission from GaSb wetting layer in GaAs," Applied Physics Letters, vol. 90, p. 243102, 2007.
[54] A. Ait-Ouali, R. Yip, J. Brebner, and R. Masut, "Strain relaxation and exciton localization effects on the Stokes shift in InAsP/InP multiple quantum wells," Journal of Applied Physics, vol. 83, p. 3153, 1998.
[55] M. Dinu, J. E. Cunningham, F. Quochi, and J. Shah, "Optical properties of strained antimonide-based heterostructures," Journal of Applied Physics, vol. 94, pp. 1506-1512, 2003.
[56] J. Christen and D. Bimberg, "Line shapes of intersubband and excitonic recombination in quantum wells: Influence of final-state interaction, statistical broadening, and momentum conservation," Physical Review B, vol. 42, p. 7213, 1990.
[57] C. L. Felix, J. R. Meyer, I. Vurgaftman, C. H. Lin, S. J. Murry, D. Zhang, and S. S. Pei, "High-temperature 4.5-mm type-II quantum-well laser with Auger suppression," IEEE Photonics Technology Letters, vol. 9, pp. 734-736, 1997.
[58] J. R. Meyer, C. L. Felix, W. W. Bewley, I. Vurgaftman, E. H. Aifer, L. J. Olafsen, J. R. Lindle, C. A. Hoffman, M. J. Yang, B. R. Bennett, B. V. Shanabrook, H. Lee, C. H. Lin, S. S. Pei, and R. H. Miles, "Auger coefficients in type-II InAs/Ga1-xInxSb quantum wells," Applied Physics Letters, vol. 73, pp. 2857-2859, 1998.
[59] A. Krier, D. Chubb, S. E. Krier, M. Hopkinson, and G. Hill, "Light sources for wavelengths >2 mm grown by MBE on InP using a strain relaxed buffer," IEE Proceeding-Optoelectronics, vol. 145, pp. 292-296, 1998.
[60] J. Kirch, T. Garrod, S. Kim, J. H. Park, J. C. Shin, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, I. Vurgaftman, J. R. Meyer, and T.-S. Kuan, "InAsyP1−y metamorphic buffer layers on InP substrates for mid-IR diode lasers," Journal of Crystal Growth, vol. 312, pp. 1165-1169, 2010.
[61] F. M. Mohammedy, O. Hulko, B. J. Robinson, D. A. Thompson, M. J. Deen, and J. G. Simmons, "Growth and characterization of GaAsSb metamorphic samples on an InP substrate," Journal of Vacuum Science &; Technology A: Vacuum, Surfaces, and Films, vol. 24, pp. 587-590, 2006.
[62] Y. Zhang, Y. Gu, Z. Tian, A. Li, X. Zhu, and Y. Zheng, "Wavelength extended 2.4 mm heterojunction InGaAs photodiodes with InAlAs cap and linearly graded buffer layers suitable for both front and back illuminations," Infrared Physics &; Technology, vol. 51, pp. 316-321, 2008.
[63] A. P. Ongstad, R. Kaspi, G. C. Dente, M. L. Tilton, and J. Chavez, "Midinfrared, optically pumped, unstable resonator lasers," Applied Physics Letters, vol. 90, p. 191107, 2007.
[64] A. P. Ongstad, R. Kaspi, A. Tauke-Pedretti, J. C. Chavez, M. L. Tilton, and G. C. Dente, "Controlling the outcoupled power in a dual wavelength optically pumped semiconductor laser," Applied Physics Letters, vol. 94, p. 241111, 2009.
[65] X. He, S. Benoit, S. R. Brueck, and R. Kaspi, "Widely Tunable Optically Pumped Mid-IR DFB Laser," Lasers and Electro-Optics (CLEO) Conference, p. CF1K.7, May 2012.
[66] S.-Y. Yang and J.-B. Yoo, "Characteristics of Zn diffusion in planar and patterned InP substrate using Zn3P2 film and rapid thermal annealing process," Surface and Coatings Technology, vol. 131, pp. 66-69, 2000.
[67] J. W. Shi, T. J. Hung, Y. Y. Chen, Y. S. Wu, L. Wei, and Y. Ying-Jay, "InP-Based Transverse Junction Light-Emitting Diodes for White-Light Generation at Infrared Wavelengths," Photonics Technology Letters, IEEE, vol. 18, pp. 2053-2055, 2006.
[68] T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, "GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating," Opt. Express, vol. 19, pp. 1884-1891, 2011.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. [12] 賴建都、黎佩芬(2010)。戶外廣告設立位置差異及影響可見度之研究,廣告學研究,第三十四集,頁1-24
2. [12] 賴建都、黎佩芬(2010)。戶外廣告設立位置差異及影響可見度之研究,廣告學研究,第三十四集,頁1-24
3. [12] 賴建都、黎佩芬(2010)。戶外廣告設立位置差異及影響可見度之研究,廣告學研究,第三十四集,頁1-24
4. [11] 黎佩芬、賴建都 (2011),網路重度使用者對網頁訊息認知與瀏覽模式之研究-以台灣購物網站商品訊息呈現為例,電子商務學報,第13卷3期,517-553。
5. [11] 黎佩芬、賴建都 (2011),網路重度使用者對網頁訊息認知與瀏覽模式之研究-以台灣購物網站商品訊息呈現為例,電子商務學報,第13卷3期,517-553。
6. [11] 黎佩芬、賴建都 (2011),網路重度使用者對網頁訊息認知與瀏覽模式之研究-以台灣購物網站商品訊息呈現為例,電子商務學報,第13卷3期,517-553。
7. [9] 唐大崙、莊賢智 (2005),由眼球追蹤法探索電子報版面中圖片位置對注意力分佈之影響,廣告學研究,第24集,89-104。
8. [9] 唐大崙、莊賢智 (2005),由眼球追蹤法探索電子報版面中圖片位置對注意力分佈之影響,廣告學研究,第24集,89-104。
9. [8] 唐大崙、李天任、蔡政旻(2005),喜好與視線軌跡關係初探—以色彩喜好排序作業為例,中華心理學刊,第4 期第47 卷,339-351。
10. [8] 唐大崙、李天任、蔡政旻(2005),喜好與視線軌跡關係初探—以色彩喜好排序作業為例,中華心理學刊,第4 期第47 卷,339-351。
11. [9] 唐大崙、莊賢智 (2005),由眼球追蹤法探索電子報版面中圖片位置對注意力分佈之影響,廣告學研究,第24集,89-104。
12. [8] 唐大崙、李天任、蔡政旻(2005),喜好與視線軌跡關係初探—以色彩喜好排序作業為例,中華心理學刊,第4 期第47 卷,339-351。