跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 01:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊侑霖
研究生(外文):Yang, Yu-Lin
論文名稱:以分子束磊晶成長之氧化錳鋅薄膜的光學特性研究
論文名稱(外文):Optical properties of ZnMnO thin films grown by molecular beam epitaxy
指導教授:周武清
指導教授(外文):Chou, Wu-Ching
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:42
中文關鍵詞:氧化錳鋅分子束磊晶
外文關鍵詞:ZnMnOMolecular beam epitaxy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文利用分子束磊晶系統在藍寶石基板上成長氧化鋅、氧化錳鋅薄膜。由X光繞射的實驗結果得知薄膜均為c軸方向的成長而且沒有第二相的產生。穿透光譜顯示氧化錳鋅的能隙隨著摻雜錳濃度的增加而有藍位移的趨勢。在共振拉曼光譜中我們發現氧化鋅樣品和氧化錳鋅樣品各自有5個和11個縱向光學聲子的訊號。藉由變溫共振拉曼光譜的實驗,可以得知縱向光學聲子訊號的強度與氧化錳鋅的能隙位置相關。除此之外,我們也對摻雜錳濃度0.3 %的氧化錳鋅薄膜量測在磁場下的光激螢光光譜,在0 T和0.3 T時分別有0 %和1.4 %的圓形極化率。
Zn1-xMnxO (x = 0 ~ 0.03) thin films were grown by molecular beam epitaxy (MBE) system. X-ray diffraction (XRD) result reveals that these samples are all grown along c-axis and there are no second phases. Transmittance shows an increase of the band gap with the increasing Mn concentration. The resonant Raman scattering (RRS) spectra showed that there are 5 and 11 longitudinal optical (LO) phonon lines for ZnO and Zn1-xMnxO samples, respectively. The LO phonon line intensity is sensitive to the band gap position as shown in the RRS spectra. Furthermore, for the Zn0.997Mn0.003O sample, the circular polarization degrees are P = 0 % and 1.4 % in magnetic field B = 0 T and 0.3 T, respectively.
Contents
Abstract (Chinese)………………………………………………………...I
Abstract (English)………………………………………………………..II
Contents…………………………………………………………………VI

Chapter 1 Introduction…………………………………………………1
1.1 Background…………………………………………………………..1
1.2 Paper reviews and motivations……………………………………….2
1.3 Organization of the thesis…………………………………………….3
Chapter 2 Experiment…………………………………………………..5
2.1 Molecular beam epitaxy (MBE) system……………………………...5
2.2 Sample preparation…………………………………………………...6
2.3 Resonant Raman scattering (RRS), photoluminescence (PL)
and transmittance……………………………………………………..8
2.4 Magneto-photoluminescence…………………………………………8
Chapter 3 Result and discussion……………………………………...17
3.1 Growth conditions of ZnO thin films……………………………….17
3.2 Structural and optical measurements of ZnMnO thin films………...21
3.2.1 X-ray diffraction………………………………………………..21
3.2.2 Interband transitions……………………………………………23
3.2.3 Multiphonon Resonant Raman scattering……...……………….26
3.2.4 Magneto-optical measurements………………………………...36
Chapter 4 Conclusion………………………………………………….39
Reference……………………………………………………………….40

Reference:
[1] J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).
[2] Y. Chen, D. M. Bagnall, H.J. Koh, K.T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
[3] T. Dietl, H. Ohno, F. Matsukara, J. Gilbert, and D. Ferrand, Science 287, 1019 (2000).
[4] J. F. Scott, Phys. Rev. B 2, 1209 (1970).
[5] H. M. Cheng, K. F. Lin, H. C. Hsu, C. J. Lin, L. J. Lin, and W. F. Hsieh, J. Phys. Chem. B 109, 18385 (2005).
[6] M. F. Cerqueira, M. I. Vasilevskiy, F. Oliveira, A. G. Rolo, T. Viseu, J. Ayres de Campos, E. Alves, and R. Correia, J. Phys. Condens. Matter 23, 334205 (2011).
[7] T. L. Phan, R. Vincent, D. Cherns, N. X. Nghia, and V. V. Ursaki, Nanotechnology 19, 475702 (2008).
[8] R. Cusco, E. Alarcon-Llado, J. Ibanez, L. Artus, J. Jimenez, B. Wang, and M. J. Callahan, Phys. Rev. B 75, 165202 (2007).
[9] E. Przezdziecka, E. Kaminska, M. Kiecana, M. Sawicki, L. Klopotowski, W. Pacuski, and J. Kossut, Solid State Commun. 139, 541 (2006).
[10] M. Godlewski, A. Wasiakowski, V.Yu. Ivanov, A. Wojcik-Glodowska, M. Lukasiewicz, E. Guziewicz, R. Jakiela, K. Kopalko, A. Zakrzewski, and Y. Dumont, Optical Materials 32, 680 (2010).
[11] Z. Yang, Z. Zuo, H. M. Zhou, W. P. Beyermann, and J. L. Liu, J. Cryst. Growth 314, 97 (2011).
[12] J. S. Wang, C. S. Yang, M. J. Liou, C. X. Wu, K. C. Chiu, and W. C. Chou, J. Crystal Growth 310, 4503 (2008).
[13] H. J. Ko, T. Yao, Y. Chen, and S. K. Hong, J. Appl. Phys. 92, 4354 (2002).
[14] X. L. Wu, G. G. Siu, C. L. Fu, H. C. Ong, Appl. Phys. Lett. 78, 2285 (2001).
[15] D. Y. Lin, H. J. Lin, J. S. Wu, W. C. Chou, C. S. Yang, and J. S. Wang, J. Appl. Phys. 105, 053506 (2009).
[16] C. A. Johnson, K. R. Kittilstved, T. C. Kaspar, T. C. Droubay, S. A. Chambers, G. M. Salley, and D. R. Gamelin, Phys. Rev. B 82, 115202 (2010).
[17] T. Mizokawa, T. Nambu, A. Fujimori, T. Fukumura, and M. Kawasaki, Phys. Rev. B 65, 085209 (2002).
[18] K. W. Boer, Survey of Semiconductor Physics: Electrons and Other Particles in Bulk Semiconductors; Van Nostrand Reinhold: New York, 1990; Chapter 28.
[19] J. F. Scott, T. C. Damen, W. T. Silfvast, R. C. C. Leite, and L. E. Cheesman, Optics Commun. 1, 397 (1970).
[20] M. C. Klein, F. Hache, D. Ricard, and C. Flytzanis, Phys. Rev. B 42, 11123 (1990).
[21] P. Lautenschlager, M. Garriga, and M. Cardona, Phys. Rev. B 36, 4813 (1987).
[22] R. M. Martin and C. M. Varma, Phys. Rev. Lett. 26, 1241 (1971).
[23] W. H. Sun, S. J. Chua, L. S. Wang, and X. H. Zhang, J. Appl. Phys. 91, 4917 (2002).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top