[1] R. G. Gallager, “Low-Density Parity-Check Codes,” Cambridge, MA: MIT Press, 1963.
[2] V. Zyablov and M. Pinsker, “Estimation of the Error-Correction Complexity of Gallager Low-Density Codes,” Probl. Pered. Inform., vol. 11, pp. 23–26, Jan. 1975.
[3] G. A. Margulis, “Explicit Construction of Graphs without Short Cycles and Low Density Codes,” Combinatorica, vol. 2, no. 1, pp. 71–78, 1982.
[4] R. M. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE Trans. Inf.Theory,vol. IT-27, no. 5, pp. 533–547, Sep. 1981.
[5] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 1710–1722, Nov. 1996.
[6] D. J. C. MacKay and R. M. Neal, “Near Shannon Limit Performance of Low Density Parity Check Codes,” Electron. Lett., vol. 32, pp. 1645–1646, Aug. 1996.
[7] D. J. C. MacKay, “Good Error Correcting Codes Based on Very Sparse Matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.
[8] S.Y. Chung, J. G. D. Forney, T. Richardson, and R. Urbanke, “On the Design of Low-Density Parity-Check Codes within 0.0045 dB of the Shannon Limit,” IEEE Commun.Lett., vol. 5, no. 2, pp. 58–60, Feb. 2001.
[9] X.Y. Hu, E. Eleftheriou, and D.M. Arnold, “Progressive Edge-Growth Tanner Graphs,” Proc. IEEE Global Telecommunications Conf. (GLOBECOM), San Antonio, TX, Nov. 2001, pp. 995–1001.
[10] X.Y. Hu, E. Eleftheriou, and D.M. Arnold, “Regular and Irregular Progressive Edge-Growth Tanner Graphs,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 386–398, Jan. 2005.
[11] D. Slepian and J. K. Wolf, “Noiseless Coding of Correlated Information Sources,” IEEE Trans. Inform. Theory, vol. 19, pp. 471-480, Jul. 1973.
[12] S. S. Pradhan and K. Ramchandran, "Distributed Source Coding Using Syndromes (DISCUS): design and construction," Proc. of Data Compression Conf.(DCC), pp. 158-167, Mar. 1999.
[13] T. Murayama, “Statistical Mechanics of Linear Compression Codes in Network Communication,” Europhysics Lett., 2001. Preprint
[14] A. D. Liveris, Z. Xiong and C. N. Geoghiades, “Compression of Binary Sources with Side Information Using Low-Density Parity-Check Codes,”2002.
[15] A. W. Eckford, F. R. Kschischang and S. Pasupathy, “Analysis of Low-Density Parity-Check Codes for the Gilbert-Elliott Channel, ” IEEE Trans.Inform. Theory, vol. 51, no. 11, pp. 3872-3889, Nov. 2005.
[16] R. Hu, R. Viswanathan, and J. Li, “A New Coding Scheme for the Noisy-Channel Slepian-Wolf Problem: Separate Design and Joint Decoding,” Proc. Globecom’04, Nov. 2004.
[17] David MacKay’s Gallager code resources, “Source Code for Progressive Edge Growth Parity-Check Matrix Construction, ” [Online]. Available:
http://www.cs.toronto.edu/~mackay/S0.html#PEG_ECC.html.
[18] Peiyu Tan, Kai Xie, and Jing Li, “Slepian-Wolf Coding Using Parity Approach and Syndrome Approach,” in Proceeding of 41st Annual Conference on Information Sciences and Systems, March 14-16 2007, Baltimore, MD, pp. 708-713.
[19] H.S. Wang and N. Moayeri, “Finite-state Markov Channel - A Useful Model for Radio Communication Channels, ” IEEE Trans. Vehicular Tech., vol. 44,no. 1, pp. 163-171, Feb. 1995.
[20] H.S. Wang and P.C. Chang, “On Verifying the First-Order Markovian Assumption for a Rayleigh Fading Channel Model, ” IEEE Trans. Vehicular Tech., vol. 45, no. 2, pp. 353-357, May 1996.
[21] L.R. Bahl, J. Cocke, F. Jeinek and J. Raviv, “Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate, ” IEEE Trans. Inform. Theory, vol. IT-20, pp. 248-287, March 1974.
[22] D. J. C. MacKay and M. C. Davey, “Evaluation of Gallager Codes for Short Block Length and High Rate Applications,” Proc. IMA Workshop on Codes, Systems and Graphical Models, pp. 113-130, 1999.
[23] 陳柏強,「基於分散式訊源編碼架構的心電圖儀」,國立交通大學碩士論文,民國一百年。