跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/25 03:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:嚴大龍
研究生(外文):Yen, Ta-Lung
論文名稱:利用漸近邊界條件分析表面波於皺褶結構之色散
論文名稱(外文):Surface Wave Dispersion Analysis of Planar Corrugated Surfaces by Asymptotic Corrugations Boundary Conditions
指導教授:黃謀勤
指導教授(外文):Ng Mou Kehn, Malcolm
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:52
中文關鍵詞:週期性結構色散圖皺褶結構區域性能帶
外文關鍵詞:Periodic structureDispersion diagramCorrugationSectorial bandgap
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
電磁能隙(Electromagnetic Bandgap, EBG)結構在近年來被廣泛的研究與應用,而皺褶性結構是其代表之一。在探討EBG結構時,色散圖(Dispersion diagram)和反射相位(Reflection phase)是兩個最重要的特性。在此篇論文中,我們將研究如何準確及快速地獲得皺褶性結構的色散圖,藉由近似法和邊界條件,從基本向量勢與電磁場的關係中推導出其特徵方程式,從方程式進而得到完整的色散圖。接著我們會與傳統獲取色散圖的方法: 橫向共振技術 (Transverse Resonance Technique, TRT)以及模擬軟體來做比較,藉此來評估其準確性及快速性。我們最後也實際建造了一個皺褶性結構,藉由散射參數來間接證明此特徵方程式所得的色散圖。

傳統上研究皺褶性結構時,會著重當波行進方向為在皺褶結構表面上0度或者90度時的情況,也就是所謂的軟和硬表面(Soft/Hard surfaces)。此篇論文會進一步探討波斜向入射時的情況。藉由觀察皺褶性結構的色散圖,我們將會發現其與一般週期性結構不一樣的地方,故我們亦會研究此特性對於不同方向的表面波在皺褶性結構上行進時會有何影響。

在量測階段時,通常無法直接獲取色散圖,而必須透過散射參數來間接說明,然而我們希望能夠透過量測還原出色散圖。因此在此篇論文,我們探討散射參數與波數之間的關係,期許可以將量測的散射參數有效地還原成色散圖。目前我們已經可以將模擬的散射參數數據還原成色散圖,期許將來可以應用在實際地量測數據。

Electromagnetic bandgap (EBG) structures had been widely investigated in literature in recent years, and the planar corrugated surface is one of them. In studying such structures, the dispersion and reflection phase diagrams are two of the most important characteristics. In this thesis, we will study how to retrieve the dispersion diagram of the corrugations accurately and rapidly. By an asymptotic method and the use of classical vector potentials, we can derive the characteristic equation, thereby obtaining the surface-wave dispersion diagram. To demonstrate its accuracy and quickness, the method we proposed will be compared to a full wave simulator and the transverse resonance technique (TRT), the latter being a traditional method for getting the dispersion diagram. Finally, we fabricated a corrugation, and measure its scattering parameters to indirectly verify the dispersion diagram obtained by the method we proposed.
In traditional studies of corrugations, surface-wave propagations along only the two principal directions are considered, pertaining to the so-called soft and hard surfaces. In this thesis, we will further explore the situation whereby the wave propagates obliquely on the surface. By observing the dispersion diagram of the corrugations, we will notice its difference compared to normal periodic structures, and then explain the wave propagation properties on the corrugation surface.
At the measurement stage, it is difficult to get the dispersion diagram directly, and usually the scattering parameters are used to explain the width and position in the frequency spectrum of the bandgaps. In the thesis, the relationship of the scattering parameters and wavenumbers are discussed, so that the measured scattering parameters can be transformed to the dispersion diagram effectively. So far we succeed in transforming the simulated scattering parameters to the dispersion diagram, and we hope this method can be applied to measured data in the future.

TABLE OF CONTENTS
CHINESE ABSTRACT ………………………………………………… i
ENGLISH ABSTRACT ………………………………………………… ii
ACKNOWLEDGEMENT ………………………………………………… iv
TABLE OF CONTENTS ………………………………………………… v
LIST OF FIGURES ………………………………………………… vi
CHAPTER 1 Introduction…………………………………… 1
CHAPTER 2 Theory………………………………………… 4
2.1 Characteristic equation of the corrugation…… 4
2.2 Refinement factor of the characteristic equation 11
2.3.1 An arbitrary example………………………… 12
2.3.2 ACBC method compared to CST…………… 14
2.4 Influence of Refinement factor ……………… 17
2.5 ACBC method compared to TRT…………… 19
2.6 Field distributions…………………………… 22
CHAPTER 3 Sectorial bandgap…………………………… 25
3.1 Dispersion diagram corresponding to Brillouin
zone……………………………………………
25
3.2 Concept of sectorial bandgap………………… 27
3.3 Sectorial bandgap corrugations design……… 29
3.4 Simulation results…………………………… 33
3.5 Measurement results………………………… 36
CHAPTER 4 Relationship between the scattering parameters
and dispersion diagram………………………
41
4.1 Introduction…………………………………… 41
4.2 Theory………………………………………… 43
4.3 Verification ………………………………… 47
CHAPTER 5 Conclusion…………………………………… 50
REFERENCE ………………………………………………… 51
[1] R. S. Elliott, “On the theory of corrugated plane surfaces,” IRE Trans. Antennas Propag., pp. 71-81, Apr 1954.
[2] R. W. Hougardy and R. C. Hansen, “Scanning surface wave antennas – oblique surface waves over a corrugated conductor,” IRE Trans. Antennas Propag., pp. 370-376, Oct 1958.
[3] P.-S. Kildal, “Definition of artificially soft and hard surfaces for electromagnetic waves,” Electronic Letters, vol. 24, no. 3, pp. 168-170, Feb. 1988.
[4] P.-S. Kildal, “Artificially soft and hard surfaces in electromagnetics,” IEEE Transactions on Antennas & Propagation, vol. 38, no. 10, pp. 1537-1544, Oct. 1990.
[5] J.A.Aas and P.-S. Kildal, “Reduction of forward scattering from struts in reflector antennas,” Proc. 18th European Microwave Conf., Stockholm, Sept. 1988, pp.494-499
[6] F. Yang and Y. Rahmat-Samii, “Electromagnetic Band Gap Structures in Antenna Engineering,” Cambridge RF and Microwave Engineering Series, Cambridge Univ. Press, Nov 2008.
[7] F. Yang and Y. Rahmat-Samii, ”A low-profile circularly polarized curl antenna over an electromagnetic bandgap (EBG) surface,” Microwave Optical Tech. Lett., vol.31, no. 4, 264-7, November 2001.
[8] A. R. Weily, L.Horvath, K. P. Esselle, B. C. Sanders, and T. S. Bird, “A planar resonator antenna based on a woodpile EBG material,” IEEE Transactions on Antennas & Propagation, vol.53, no. 1, 216-23,2005.
[9] R. Coccioli, F.R. Yang, K.P. Ma, and T. Itoh, “Aperture-coupled patch antenna on UC-PBG substrates,” IEEE Trans. Microwave Theory Tech, vol. 47, 2131-8, 1999.
[10] T. M. Uusitupa, “Usability studies on approximate corrugation models in scattering analysis,” IEEE Trans. Antennas Propag., vol. AP-54, no. 9, pp. 2486-2496, Sep 2006.
[11] H. A. Kalhor, “Approximate analysis of electromagnetic scattering from corrugating conducting surfaces by surface impedance modeling,” IEEE Trans. Antennas Propag., vol. AP-25, pp. 721-722, Sep 1977.
[12] P.- S. Kildal, A. Kishk, and Z. Sipus, “Asymptotic boundary conditions for strip-loaded and corrugated surfaces,” Microw. Opt. Technol. Lett., vol. 14, no. 2, pp. 99-101, Feb. 1997.
[13] D.Sievenpiper, L.Zhang, R. F. J. Broas, N.G. Alexopolus, and E. Yablonovitch, ”High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech., vol.47, 2059-74,1999.
[14] Wei-Zhang, Chang-Hong Liang, Tong-Hao Ding, and Bian Wu, “A novel broadband EBG using multi-via cascaded mushroom-like structure,” 2009 Asia-Pacific Microwave Conference, Singapore , Dec.2009.
[15] C. H. Walter, Traveling Wave Antennas, Chapter 6, pp. 259-260, Peninsular Publishing, 1965.
[16] D. M. Pozar, Microwave Engineering, 2nd ed. New York: Wiley, 1998.
[17] A. M. NICOLSON and G.F. Ross, “Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques,” IEEE TRANSSACTIONS ON INSTRUMENTATION AND MEASUREMENT, vol. IM-19, No. 4. Nov. 1970.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top