跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 18:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李冠杰
論文名稱:合作式定位之低維度最小方差演算法
論文名稱(外文):Dimension-Reduced Least-Squares Algorithms for Cooperative Localization
指導教授:謝世福
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:74
中文關鍵詞:合作式定位最小方差定位
外文關鍵詞:cooperative localizationleast-squares localization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
隨著無線通訊的發展,定位的研究已成為重要的議題。近年來,藉由待測物之間彼此相互通訊的合作式定位更是目前發展的重點。在合作式定位系統中,多個待測目標之間額外的合作量測可以有效提升其定位的精準度;但由於待測目標的增加,因此演算法的複雜度相較於傳統定位法更是困難許多。在諸多演算法中,高斯-牛頓法被廣泛的應用在定位的問題中,效能也與Cramer-Rao Lower Bound (CRLB) 相當;然而其牽涉到反矩陣的運算,使得伴隨而來的複雜度相當高。我們試著藉由降低矩陣的維度使反矩陣的運算量降低,進而達到降低複雜度的目標。在論文中,我們設定一個待測物為目標待測物,並試著尋找其餘附屬待測物與目標待測物之間的位置關係,藉此來達到降低運算度的目的,並維持其定位準確度。因此,我們提出了聯合式、平行式與序列式三種預先線性化的方法使附屬待測物的位置座標轉化成目標待測物的線性函式。接著再利用此線性函式使原來的多待測物問題降階成一個目標待測物的估計問題並利用低維度高斯-牛頓法來估計。其中平行式與序列式的演算法運算複雜度順利的被簡化。另外,基於目標待測物的位置估計的影響,我們更進一步提出目標待測物的選擇機制,進而增進定位的效能;另一方面,根據待測物的不確定性,我們對於權重也做了額外的補償。電腦模擬驗證了目標待測物的選擇機制及權重補償能夠提高定位準確度;另外也比較了高斯-牛頓法與我們提出的預先線性法,證明在不失定位準度的情況下,減少了運算複雜度。
Cooperative localization has received extensive interest from the robotic, optimization, and wireless communication. In addition to the range measurements from the mobile and BSs with known position, the extra information among mobiles is added to improve the accuracy of position in cooperative localization. The Gauss-Newton (GN) method can be used to solve the cooperative positioning problem with good performance, but its computational complexity is quite high due to the matrix inversion. However, if the dimension is reduced, the complexity of algorithm is reduced as well. In this thesis, a target mobile is selected as reference mobile, we want to find the relationship between auxiliary mobiles and the target mobile. Therefore, we propose three pre-linear methods, joint, parallel and sequential methods, which can reduce dimension of the unknown parameters by searching the linear mapping relations from auxiliary mobiles to target mobile. With the pre-linear mapping function, the dimension-reduced GN method of target mobile is derived based on the conventional GN method. The total computational cost can be reduced greatly in parallel and sequential methods. Moreover, the choice of target mobile and compensation of inaccurate mobiles are discussed to enhance the localization accuracy. Simulations validate the enhancement of accuracy. In addition, we also compare performance of RMSE and total computation cost for low-complexity pre-linear methods with GN method.
1.Introduction...1
2.Localization System...4
2.1 System Model...4
2.2 Least-Squares Algorithm...6
2.1.1 Gauss-Newton Method...7
2.2.2 Linearization of Least-Squares Method...8
2.2.3 Transformed Least-Squares Framework...9
2.2.4 Cramer-Rao Lower Bound...11
3. Cooperative Localization System...12
3.1 Cooperative GN method...14
3.1.1 Joint GN method...15
3.1.2 Divided GN method...17
3.1.3 Cooperative CRLB...18
3.2 Pre-Linear Methods of Auxiliary Mobiles...19
3.2.1 Joint Pre-Linear Method...22
3.2.2 Parallel Pre-Linear Method...27
3.2.3 Sequential Pre-Linear Method...31
3.3 Dimension Reduced GN Method of Target Mobile...35
3.4 Weighting Compensation in Inaccurate Cooperative Mobiles...38
3.5 Target Mobile Selection...40
3.6 Computation Cost...40
4. Computer Simulations...47
4.1 Comparison of RMSE with GN method...49
4.1.1 Comparison with CRLB...49
4.1.2 Comparison of Pre-Linear Methods and Joint-GN Method...51
4.2 Reliability of Cooperative Localization...55
4.2.1 Measurement between Mobiles...55
4.2.2 Positions of Mobiles...59
4.3 Effect on Target Mobile...61
4.4 Weighting Compensation...63
4.4.1 Initial Value...63
4.4.2 Effect on Weighting of Noise Variance...64
4.4.3 Weighting Compensation...65
5. Conclusions and Future Work...70
[1] N. Patwari., J.N. Ash, S. Kyperountas, A.O. Hero, III, R.L. Moses, and N.S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,”
IEEE Signal Processing Magazine, Volume 22 , pp. 54 - 69 , 2005.

[2] N.A. Alsindi, B. Alavi, and K. Pahlavan, “Measurement and modeling of ultrawideband TOA-based ranging in indoor multipath environments,”
IEEE Transactions on Vehicular Technology Volume 58, pp. 1046 – 1058, 2009.

[3] A.N. Bishop, B. Fidan, B.D.O. Anderson, K. Dogancay; and P.N. Pathirana,
“Optimal range-difference-based localization considering geometrical constraints,” IEEE Journal of Oceanic Engineering, Vol. 33, pp. 289 – 301, 2008.

[4] M. Souden, S. Affes, and J. Benesty, “A two-stage approach to estimate the angles of arrival and the angular spreads of locally scattered sources,” IEEE Transactions on Signal Processing, Volume 56, pp. 1968 – 1983, 2008.

[5] H. Ren, M. Meng, “Power adaptive localization algorithm for wireless sensor networks using particle filter,” IEEE Transactions on Vehicular Technology, Volume 58, pp. 2498 – 2508, 2009.

[6] A. Broumandan, T. Lin, J. Nielsen, and G. Lachapelle, “Practical results of hybrid AOA/TDOA geo-location estimation in CDMA wireless networks,” 2008. VTC 2008-Fall. IEEE 68th Vehicular Technology Conference, pp. 1 – 5, 2008.

[7] W. Wang, J-Y Xiong, and Z-L Zhu, ’’A new NLOS error mitigation algorithm in location estimation,” IEEE Transactions on Vehicular Technology, Volume 54, pp. 2048 – 2053, Nov. 2005.

[8] N.A. Alsindi, B. Alavi, K. Pahlavan, and X. Ei, ’’A novel cooperative localization algorithm for indoor sensor networks,’’ Personal, Indoor and Mobile Radio Communications, IEEE, pp. 1-6, 2006.
[9] J. Yan, C. Tiberius, G. Bellusci and G. Janssen, ‘’Low complexity improvement on linear least-squares localization,’’ Communication System, IEEE Conference, pp. 124-128, 2008.

[10] W. H. Foy, ‘’Position-location solutions by Taylor-series estimation,’’ Aerospace and Electronic System, IEEE Trans, pp. 187-194, 1976.

[11] M.D. Gillette, H.F. Silverman, ‘’ A linear closed-form algorithm for source localization from time-differences of arrival,’’ Signal Processing Letters, IEEE, pp. 1-4, 2008.

[12] S. Wu, J. Li, and S. Liu, ’’An improved reference selection method in linear
least squares localization for LOS and NLOS,’’ Vehicular Technology, IEEE Conference, pp. 1-5, 2011.

[13] J. Yan, C. Tiberius, G. Bellusci and G. Janssen, ‘’A framework for low complexity least-squares localization with high accuracy,’’ IEEE transactions on Signal Processing, vol. 58, no. 9, pp. 4836-4847, 2010.

[14] F. Chan, H.C. So, and W.K. Ma, ‘’A novel subspace approach for cooperative localization in wireless sensor networks using range measurement,’’ IEEE Transactions on Signal Processing, volume: 57, pp 260-269, 2009.

[15] O. Abumansoor, A. Boukerche , ‘’A secure cooperative approach for Nonline-of-Sight location verification in VANET,’’ IEEE Transactions on Vehicular Technology, vol. 61, no. 1, 2012.

[16] P. Tarrio, A.M. Bernardos, J.A. Besada, and J.R. Casar, ‘’A new positioning technique for RSS-Based localization based on a weighting least squares estimator,’’ Wireless Communication System, IEEE International Symposium, pp. 633-637, 2008.

[17] Y. Zhang, Q. Cui, and X.F. Tao, ‘’Cooperative positioning for the converged networks,’’ Vehicular Technology Conference, IEEE, pp. 1-6, 2009.

[18] Timothy Sauer, ‘’Numerical analysis,’’ Boston: Pearson Addison Wesley, c2006.

[19] K. W. Cheung, H. C. So, W.-K. Ma, and Y. T. Chan, “Least squares algorithms for time-of-arrival-based mobile location,” IEEE Trans. Signal Process., vol. 52, no. 4, pp. 1121–1128, Apr. 2004.

[20] A. O. Hero, III and D. Blatt, “Sensor network source localization via projection onto convex sets (POCS),” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Mar. 2005, vol. 3, pp. 689–692.

[21] K.C. Ho, L.Yang, ‘’On the use of a calibration emitter for source localization in the presence of sensor position uncertainty,’’ IEEE Trans on Signal Processing, vol. 56, no. 12, Dec. 2008.
[22] H. V. Poor, ‘’An introduction to signal detection and estimation,’’ 2nd ed, New York: MA: Kluwer, 2000.

[23] I. Guvenc, S. Gezici, F. Watanable, and H. Inamura, ‘’Enhancements to Linear Least Squares Localization Through Reference Selection and ML Estimation,’’ Wireless Communication and Networking Conference, IEEE, 2008

[24] G. H. Golub and C.F. Van Loan, ‘’Matrix Computations, ‘’ 3rd.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top