跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 11:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝木政
研究生(外文):Hsieh, Mu-Cheng
論文名稱:人機系統之虛擬運動限制設計:模擬系統與機器人操作之應用
論文名稱(外文):Virtual Motion Constraint Design for Human-Machine Systems: Applications in Simulation Systems and Robot Manipulation
指導教授:楊谷洋楊谷洋引用關係
指導教授(外文):Young, Kuu-young
學位類別:博士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:70
中文關鍵詞:力回饋搖桿觸覺裝置人機系統機器人操作虛擬運動限制
外文關鍵詞:Force-reflection joystickHaptic deviceHuman-machine systemsRobot manipulationVirtual motion costraint
相關次數:
  • 被引用被引用:0
  • 點閱點閱:391
  • 評分評分:
  • 下載下載:113
  • 收藏至我的研究室書目清單書目收藏:1
  現今各種觸覺裝置已廣泛應用在娛樂、教育、訓練、製造、機器人遙控操作、藝術等各領域中,藉由觸覺以增加虛擬物件的真實感或提供力輔助來促進操作感受及提昇工作效能。虛擬運動限制(virtual motion constraint)係由軟體產生,透過力回饋搖桿來限制操作者的運動空間,藉以符合對應的工作要求或提供操作者即時的操作輔助。基於此觀念,本論文提出虛擬運動限制的設計方法,可適用於已知或未定的操作環境,並應用在模擬操控系統及機器手臂操作上。前者,針對已知的模擬工作,我們經由組合虛擬牆來建構運動限制,以兩軸力回饋搖桿發展出一個多功能的虛擬操作系統,可用來模擬多種不同工作的操作裝置,如扳手、排擋器等。我們也提出以像素(pixel)為基礎的方法,不僅便於以圖形編輯軟體來組裝各式虛擬牆,且能在不同牆面間達成力的平滑呈現。實驗結果顯示,該系統能掌握所模擬操作裝置的主要特徵。而後者,關於未定環境的多軸機器手臂操作,我們以運動限制發展一套虛擬工具,如虛擬尺等,根據使用者的需要,提供使用者在位置與方向上的輔助,經由操作六軸力回饋搖桿來操控機器手臂。我們也提出點、線、面等虛擬工具的實現方法,且能在不同工具或方向切換時,仍使輔助力保持平順。為了展現成果,在實驗中本系統執行路徑跟隨以及用扳手鎖螺絲這類需要技巧的操作工作。
  Nowadays haptic devices have been applied to many areas, such as entertainment, education, training, manufacturing, telerobotics, art, and so on, to enhance the reality of virtual objects or provide force assistance, and thus to foster manipulative feeling or to improve task performance. Virtual motion constraint is generated via the software, so that the force-reflection joystick, operated by the user, is confined to move within a limited workspace that corresponds to task requirements or provides the user the real-time assistance. Based on this concept, this dissertation proposes methods to design virtual motion constraints, which can be applicable for well-known or uncertain environments, and apply them for simulation systems and robot manipulation. First, for a well-known simulated task, we assembly virtual walls to construct the desired motion constraint and thus develop a multi-functional virtual manipulation system, based on a 2-DOF (degree-of-freedom) force-reflection joystick, to emulate various manipulative devices, e.g., a wrench or gearshift level. We also propose a pixel-based method, which can easily construct these motion constraints by using the graphic editing software and also maintain smooth force rendering between the walls. The experimental results show that this system can capture the main features of various kinds of manipulative devices. Second, for manipulating a multi-DOF robot manipulator in uncertain environments, also based on the concept of virtual motion constraint, we develop a set of virtual tools, e.g., a virtual ruler, which can provide the position or orientation assistance to the user, according to her/his demand on site, to govern the robot effectively by operating a 6-DOF force-reflection joystick. We also implement several kinds of virtual tools, such as a point, line, or plane. Smooth force rendering during the transition between the use of two consecutive tools in guidance are also achieved. For demonstration, the system is employed for the tasks of contour following and screw fastening, which involve delicate and challenging maneuvers.
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . 1
1.2 Dissertation Contributions . . . . . . . . . . . . . . . . . 5
1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . 7
2 Multi-Functional Virtual Manipulation System . . . . . . . . . 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Proposed Virtual Manipulation System . . . . . . . . . . . . 10
2.2.1 Virtual Wall Design . . . . . . . . . . . . . . . . . . .. 12
2.2.2 Motion Constraint Construction . . . . . . . . . . . . . . 14
2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . .. 18
2.3.1 Virtual Omni-Directional Wrench . . . . . . . . . . . . .. 20
2.3.2 Virtual Manual Gearshift System . . . . . . . . . . . . .. 25
2.4 User Response Evaluation . . . . . . . . . . . . . . . . . . 27
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . .. 30
3 Effective Manipulation for a Multi-DOF Robot Manipulator . . . 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Proposed Manipulation System . . . . . . . . . . . . . . . . 33
3.2.1 Virtual Linkage . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Virtual Tools . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Virtual Bumper . . . . . . . . . . . . . . . . . . . . . . 43
3.3 System Implementation . . . . . . . . . . . . . . . . . . . 45
3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Executing Linear Movement with Fixed Orientation . . . . . 48
3.4.2 Manipulating the Hex Key for Screw Fastening . . . . . . . 51
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 58
Bibliography 60
[1] (2012, March) Kinect. Wikipedia. [Online]. Available: http://en.wikipedia.org/
wiki/Kinect
[2] (2012, March) Phantom omni haptic device. Sensable Technologies. [Online].
Available: http://www.sensable.com/haptic-phantom-omni.htm
[3] D. Aarno, S. Ekvall, and D. Kragic, "Adaptive virtual fixtures for machine-assisted
teleoperation tasks," in IEEE International Conference on Robotics and Automation,
2005, pp. 897--903.
[4] J. Abbott, P. Marayong, and A. Okamura, "Haptic virtual fixtures for robot-assisted
manipulation," in Robotics Research, ser. Springer Tracts in Advanced Robotics,
S. Thrun, R. Brooks, and H. Durrant-Whyte, Eds. Springer Berlin/Heidelberg,
2007, vol. 28, pp. 49--64.
[5] J. J. Abbott and A. M. Okamura, "Pseudo-admittance bilateral telemanipulation
with guidance virtual fixtures," Robotics Research, vol. 26, no. 8, pp. 865--884, 2007.
[6] J. Abbott, G. Hager, and A. Okamura, "Steady-hand teleoperation with virtual
fixtures," in IEEE International Workshop on Robot and Human Interactive Communication,
2003, pp. 145--151.
[7] Y. Adachi, T. Kumano, and K. Ogino, "Intermediate representation for stiff virtual
objects," in IEEE Virtual Reality Annual International Symposium, 1995, pp. 203--211.
[8] A. Bettini, P. Marayong, S. Lang, A. Okamura, and G. Hager, "Vision-assisted con-
trol for manipulation using virtual fixtures," IEEE Transactions on Robotics, vol. 20,
no. 6, pp. 953--966, 2004.
[9] G. C. Burdea, Force and Touch Feedback for Virtual Reality. New York: John Wiley
& Sons, 1996.
[10] G. C. Burdea, "Invited review: the synergy between virtual reality and robotics,"
IEEE Transaction on Robotics and Automation, vol. 15, no. 3, pp. 400--410, 1999.
[11] G. C. Burdea and P. Coiffet, Virtual Reality Technology. New York: John Wiley &
Sons, 1994.
[12] C.-C. P. Chu, T. H. Dani, and R. Gadh, "Multimodal interface for a virtual real-
ity based computer aided designed system," in IEEE International Conference on
Robotics and Automation, 1997, pp. 1329--1334.
[13] C. L. Clover, G. R. Luecke, J. J. Troy, and W. A. McNeely, "Dynamic simulation
of virtual mechanisms with haptic feedback using industrial robotics equipment," in
IEEE International Conference on Robotics and Automation, 1997, pp. 724--730.
[14] J. E. Colgate, P. E. Grafing, M. C. Stanley, and G. Schenkel, "Implementation of
stiff virtual walls in force-reflecting interfaces," in IEEE Virtual Reality Annual In-
ternational Symposium, 1993, pp. 202--208.
[15] J. Colgate, M. Stanley, and J. Brown, "Issues in the haptic display of tool use," in
IEEE/RSJ International Conference on Intelligent Robots and Systems, 1995, pp. 140--145.
[16] M. Eid, M. Mansour, R. Iglesias, and A. El Saddik, "A device independent haptic
player," in IEEE Symposium on Virtual Environments, Human-Computer Interfaces
and Measurement Systems, 2007, pp. 7--12.
[17] B. A. Forsyth and K. E. MacLean, "Predictive haptic guidance: Intelligent user
assistance for the control of dynamic tasks," IEEE Transactions on Visualization
and Computer Graphics, vol. 12, no. 1, pp. 103--113, 2006.
[18] A. Frisoli, C. A. Avizzano, and M. Bergamasco, "Simulation of a manual gearshift
with a 2 DOF force-feedback joystick," in IEEE International Conference on Robotics
and Automation, 2001, pp. 1364--1369.
[19] A. Gasparetto, R. Vidoni, and V. Zanotto, "Dforce: Delayed force reference control
for master-slave robotic systems," Mechatronics, vol. 19, no. 5, pp. 639--646, 2009.
[20] T. L. Gibo, L. N. Verner, D. D. Yuh, and A. M. Okamura, "Design considerations
and human-machine performance of moving virtual fixtures," in IEEE International
Conference on Robotics and Automation, 2009, pp. 671--676.
[21] C. Glover, B. Russell, A. White, M. Miller, and A. Stoytchev, "An effective and intu-
itive control interface for remote robot teleoperation with complete haptic feedback,"
in Emerging Technologies Conference, 2009.
[22] C. Guo and E. Sharlin, "Exploring the use of tangible user interfaces for human-
robot interaction: a comparative study," in SIGCHI Conference on Human Factors
in Computing Systems, 2008, pp. 121--130.
[23] B. Hannaford, L. Wood, D. McAffee, and H. Zak, "Performance evaluation of a six-
axis generalized force-reflecting teleoperator," IEEE Transactions on Systems, Man
and Cybernetics, vol. 21, no. 3, pp. 620--633, 1991.
[24] V. Hayward, O. R. Astley, M. Cruz-Hernandez, D. Grant, and G. R. de-la Torre,
"Haptic interfaces and devices," Sensor review, vol. 24, no. 1, pp. 16--29, 2004.
[25] M.-C. Hsieh, P.-Y. Tseng, M.-S. Jan, and K.-Y. Young, "Manipulating a multi-
DOF robot manipulator for tasks in home-like environments," in 17th International
Symposium on Artificial Life and Robotics, 2012.
[26] M.-C. Hsieh and K.-Y. Young, "Motion constraint design and implementation for
a multi-functional virtual manipulation system," Mechatronics, vol. 20, no. 3, pp.
346--354, 2010.
[27] J. Hyde and M. Cutkosky, "Contact transition control: an experimental study," in
IEEE International Conference on Robotics and Automation, 1993, pp. 363--368.
[28] L. D. Joly and C. Andriot, "Imposing motion constraints to a force reflecting teler-
obot through real-time simulation of a virtual mechanism," in IEEE International
Conference on Robotics and Automation, 1995, pp. 357--362.
[29] C. C. Kemp, A. Edsinger, and E. Torres-Jara, "Challenges for robot manipulation
in human environments," IEEE Robotics and Automation Magazine, vol. 14, no. 1,
pp. 20--29, 2007.
[30] C.-P. Kuan and K.-Y. Young, "VR-based teleoperation for robot compliance control,"
Journal of Intelligent and Robotic Systems, vol. 30, no. 4, pp. 377--398, 2001.
[31] A. B. Kuang, S. Payandeh, B. Zheng, F. Henigman, and C. L. MacKenzie, "As-
sembling virtual fixtures for guidance in training environments," in International
Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems,
2004, pp. 367--374.
[32] K. J. Kuchenbecker and G. Niemeyer, "Induced master motion in force-reflecting
teleoperation," ASME Journal of Dynamic Systems, Measurement, and Control, vol.
128, no. 4, pp. 800--810, 2006.
[33] S. Lederman and R. Klatzky, "Haptic perception: A tutorial," Attention, Perception,
& Psychophysics, vol. 71, pp. 1439--1459, 2009.
[34] M. Li, M. Ishii, and R. H. Taylor, "Spatial motion constraints using virtual fixtures
generated by anatomy," IEEE Transactions on Robotics, vol. 23, no. 1, pp. 4--19,
2007.
[35] M. Li and A. M. Okamura, "Recognition of operator motions for real-time assistance
using virtual fixtures," in International Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems, 2003, pp. 125--131.
[36] C.-W. Liang, M.-C. Hsieh, and K.-Y. Young, "A VR-based calligraphy writing system
with force reflection," International Journal of Automation and Smart Technology,
vol. 1, no. 2, pp. 83--91, 2011.
[37] W.-C. Lin and K.-Y. Young, "Design of force-reflection joystick system for VR-based
simulation," Journal of Information Science and Engineering, vol. 23, no. 5, pp.
1421--1436, 2007.
[38] X. Liu, G. Dodds, J. McCartney, and B. Hinds, "Virtual DesignWorks-designing 3D
CAD models via haptic interaction," Computer-Aided Design, vol. 36, no. 12, pp.
1129--1140, 2004.
[39] M. Minsky, M. Ouh-young, O. Steele, F. P. B. Jr., and M. Behensky, "Feeling and
seeing: Issues in force display," Computer Graphics, vol. 24, no. 2, pp. 235--243, 1990.
[40] Industrial Robots Instruction Manual, Ethernet Interface CRn-500 series, Mitsubishi
Electric Industrial Automation, 2002.
[41] D. Morris, H. Tan, F. Barbagli, T. Chang, and K. Salisbury, "Haptic feedback en-
hances force skill learning," in Second Joint EuroHaptics Conference and Symposium
on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2007, pp.
21--26.
[42] K. Moustakas, G. Nikolakis, K. Kostopoulos, D. Tzovaras, and M. Strintzis, "Haptic
rendering of visual data for the visually impaired," IEEE Multimedia, vol. 14, no. 1,
pp. 62--72, 2007.
[43] A. Nahvi, D. D. Nelson, J. M. Hollerbach, and D. E. Johnson, "Haptic manipula-
tion of virtual mechanisms from mechanical CAD designs," in IEEE International
Conference on Robotics and Automation, 1998, pp. 375--380.
[44] H. Ohtsuka, K. Shibasato, and S. Kawaji, "Experimental study of collaborater in
human-machine system," Mechatronics, vol. 19, no. 4, pp. 450--456, 2009.
[45] M. Ouh-young, W.-N. Tsai, M.-C. Tsai, J.-R. Wu, C.-H. Huang, and T.-J. Yang,
"Low-cost force feedback joystick and its use in PC video games," IEEE Transactions
on Consumer Electronics, vol. 41, no. 3, pp. 787--794, 1995.
[46] H. Park, E. Kim, S. Jang, S. Park, M. Park, and H. Kim, "HMM-based gesture
recognition for robot control," in Pattern Recognition and Image Analysis, ser. Lec-
ture Notes in Computer Science, J. Marques, N. Prez de la Blanca, and P. Pina, Eds.
Springer Berlin/Heidelberg, 2005, vol. 3522, pp. 607--614.
[47] C. Passenberg, A. Peer, and M. Buss, "A survey of environment-, operator-, and
task-adapted controllers for teleoperation systems," Mechatronics, vol. 20, no. 7, pp.
787--801, 2010.
[48] M. A. Peshkin, J. E. Colgate, W. Wannasuphoprasit, C. A. Moore, R. B. Gillespie,
and P. Akella, "Cobot architecture," IEEE Transactions on Robotics and Automa-
tion, vol. 17, no. 4, pp. 377--390, 2001.
[49] R. Prada and S. Payandeh, "A study on design and analysis of virtual xtures for
cutting in training environments," in First Joint Eurohaptics Conference and Sympo-
sium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005,
pp. 375--380.
[50] R. Prada and S. Payandeh, "On study of design and implementation of virtual x-
tures," Virtual Reality, vol. 13, no. 2, pp. 117--129, 2009.
[51] P. Rizun and G. Sutherland, "Tactile feedback laser system with applications to
robotic surgery," in First Joint Eurohaptics Conference and Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems, 2005, pp. 426--431.
[52] G. Robles-De-La-Torre, "The importance of the sense of touch in virtual and real
environments," IEEE Multimedia, vol. 13, no. 3, pp. 24--30, 2006.
[53] L. B. Rosenberg, "Virtual xtures: Perceptual tools for telerobotic manipulation,"
in IEEE Virtual Reality Annual International Symposium, 1993, pp. 76--82.
[54] D. C. Ruspini, K. Kolarov, and O. Khatib, "The haptic display of complex graph-
ical environments," in ACM International Conference on Computer Graphics and
Interactive Techniques, 1997, pp. 345--352.
[55] D. Ryu, J.-B. Song, C. Cho, S. Kang, and M. Kim, "Development of a six DOF haptic
master for teleoperation of a mobile manipulator," Mechatronics, vol. 20, no. 2, pp.
181--191, 2010.
[56] K. Salisbury, F. Conti, and F. Barbagli, "Haptic rendering: Introductory concepts,"
IEEE Computer Graphics and Applications, vol. 24, no. 2, pp. 24--32, 2004.
[57] M. A. Srinivasan and C. Basdogan, "Haptics in virtual environments: Taxonomy,
research status, and challenges," Computer & Graphics, vol. 21, no. 4, pp. 393--404,
1997.
[58] B. Stanczyk, A. Peer, and M. Buss, "Development of a high-performance haptic
telemanipulation system with dissimilar kinematics," Advanced Robotics, vol. 20,
no. 11, pp. 1303--1320, 2006.
[59] A. R. Tilley, The Measure of Man and Woman | Human Factors in Design. New
York: John Wiley & Sons, 2002.
[60] E. Veras, K. Khokar, R. Alqasemi, and R. Dubey, "Laser-assisted real-time and scaled
telerobotic control of a manipulator for defense and security applications," in SPIE
Defense, Security, and Sensing Conference, vol. 7332, no. 1, 2009.
[61] D. Wang, Y. Zhang, and C. Yao, "Stroke-based modeling and haptic skill display for
Chinese calligraphy simulation system," Virtual Reality, vol. 9, pp. 118--132, 2006.
[62] Y. Wang, Y. Chen, Z. Nan, and Y. Hu, "Study on welder training by means of haptic
guidance and virtual reality for arc welding," in IEEE International Conference on
Robotics and Biomimetics, 2006, pp. 954--958.
[63] W. Yu, R. Alqasemi, R. Dubey, and N. Pernalete, "Telemanipulation assistance based
on motion intention recognition," in IEEE International Conference on Robotics and
Automation, 2005, pp. 1121--1126.
[64] C. B. Zilles and J. K. Salisbury, "A constraint-based god-object method for haptic
display," in IEEE International Conference on Intelligent Robots and Systems, 1995,
pp. 146--151.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top