|
[1] A. Wang and A.P. Chandrakasan, “A 180-mV subthreshold FFT processor using a minimum energy design methodology,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 310-319, Jan. 2005. [2] J. Wang, J. Chen, Y. Wang, and C. Yeh, “A 230 mV-to-500 mV 375 KHz-to-16 MHz 32b RISC core in 0.18 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Digest of Tech. Papers, Feb. 2007, pp. 294-604. [3] M. H. Tu, J. Y. Lin, M. C. Tsai, S. J. Jou, and C. T. Chuang, “Single-Ended Subthreshold SRAM With Asymmetrical Write/Read-Assist,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 57, no. 12, pp. 3039-3047, Dec. 2010. [4] D.C. Daly, and A.P. Chandrakasan,” A 6-bit, 0.2 V to 0.9 V highly digital flash ADC with comparator redundancy,” IEEE Journal of Solid-State Circuits, vol. 44, no. 11, pp. 3030-3038, Nov. 2009. [5] W. H. Ma, J. C. Kao, V. S. Sathe, and M. C. Papaefthymiou, “187 MHz sub-threshold-supply charge-recovery FIR,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 793-803, Apr. 2010. [6] K. Roy, S. Mukhopadhyay, and H. M. Meimand, “Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits,” Proceeding of the IEEE, vol. 91, no. 2, pp. 305-327, Feb. 2003. [7] C. Y. Lu, and J. M. Sung, “Reverse short-channel effects on threshold voltage in sub-micrometer salicide devices,” IEEE Trans. Electron Device Letters, vol. 10, no. 10, pp. 446-448, Jan. 1989. [8] T. H. Kim, J. Keane, H. Eom, and C. H. Kim, “Utilizing reverse short-channel effect for optimal subthreshold circuit design,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 15, no. 7, pp. 821-829, Jul. 2004. [9] S. Hanson, M. Seok, D. Sylvester, and D. Blaauw, “Nanometer device scaling in sub-threshold logic and SRAM,” IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 175-185, Jan. 2008. [10] X. Yuan, J. E. Park, J. Wang, E. Zhao, D. C. Ahlgren, T. Hook, J. Yuan, V. W. C. Chan, H. Shang, C. H. Liang, R. Lindsay, S. Park, and H. Choo, “Gate-induced-drain leakage current in 45 nm CMOS technology,” IEEE Trans. Device and Materials Reliability, vol. 8, no. 3, pp. 501-508, Sep. 2008. [11] D. Lee, D. Blaauw , and D. Sylvester, “Gate oxide leakage current analysis and reduction for VLSI circuits,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 12, no. 2, pp. 155-166, Feb. 2004. [12] N. Verma, and A. P. Chandrakasan, “A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 141-149, Jan. 2008. [13] D. Bol, R. Ambroise, D. Flandre, , and J. D. Legat, “Interests and limitations of technology scaling for subthreshold logic,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 17, no. 10, pp. 1508-1519, Oct. 2009. [14] S. S. Sapatnekar, “Overcoming variations in nanometer-scale technologies,” IEEE J. Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 1, pp. 5-18, Mar. 2011. [15] S. R. Vemuru, “Effects of simultaneous switching noise on the tapered buffer design,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 5, no. 3, pp. 290-300, Sep. 1997. [16] J. H. Lou and J. B. Kuo, “A 1.5-V full-swing bootstrapped CMOS large capacitive-load driver circuit suitable for low-voltage CMOS VLSI,” IEEE J. Solid-State Circuits, vol. 32, no. 1, pp. 119-121, Jan. 1997. [17] J. Kil, J. Gu, and C. H. Kim, “A high-speed variation-tolerant interconnect technique for sub-threshold circuits using capacitive boosting,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 16, no. 4, pp. 456-465, Apr. 2008. [18] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “A dynamic voltage scaled microprocessor system,” IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1571–1580, Nov. 2000. [19] S. Das, C. Tokunaga, S. Pant, W. Ma, S. Kalaiselvan, K. Lai, D. M. Bull, and D. Blaauw, “RazorII: in situ error detection and correction for pvt and ser tolerance,” IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 32–48, Jan. 2009. [20] A. Drake, R. Senger, H. Deogun, G. Carpenter, S. Ghiasi, T. Ngyugen, N. James, and M. Floyd, “A distributed critical-path timing monitor for a 65 nm high-performance microprocessor,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Digest of Tech. Papers, Feb. 2007, pp. 398–399. [21] M. Nakai, S. Akui, K. Seno, T. Meguro, T. Seki, T. Kondo, A. Hashiguchi, H. Kawahara, K. Kumano, and M. Shimura, “Dynamic voltage and frequency management for a low power embedded microprocessor,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 28–35, Jan. 2005. [22] J. T. Kao and A. P. Chandrakasan, “Dual-threshold voltage techniques for low-power digital circuits,” IEEE J. Solid-State Circuits, vol. 35, no. 7, pp. 1009-1018, Jul. 2000. [23] Y. Pu, J. P. Gyvez, H. Corporaal, and Y. Ha, “An ultra-low-energy multi-standard JPEG co-processor in 65 nm CMOS with sub/near threshold supply voltage,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 668-680, Jan. 2010. [24] S. Mutoh, S. Shigematsu, Y. Matsuya, H. Fukuda, and J. Yamada, “A 1 V multi-threshold voltage CMOS DSP with an efficient power management technique for mobile phone application,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Digest of Tech. Papers, Feb. 1996, pp. 168–171. [25] J. M. Carrillo, G. Torelli, R. Perez-Aloe, J. F. Duque-Carrillo, “ 1-V rail-to-rail CMOS Opamp with improved bulk-driven input stage” IEEE J. Solid State Circuits, vol. 42, no. 3, pp. 508-517, Mar. 2007 [26] J. T. Kao, M. Miyazaki, and A. P. Chandrakasan, “A 175-MV multiply-accumulate unit using an adaptive supply voltage and body bias architecture” IEEE J. Solid State Circuits, vol. 37, no. 11, pp. 1545-1554, Nov. 2002 [27] Y. L. Lo, and W. B. Yang, T. S. Chao, and K. H. Cheng, “Designing an Ultralow-Voltage Phase-Locked Loop Using a Bulk-Driven Technique,” IEEE Trans. Circuits and Syst. II, vol. 56, no. 5, pp. 339-343, May 2009 [28] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001 [29] K. Banerjee and A. Mehrotra, “A Power-Optimal Repeater Insertion Methodology for Global Interconnects in Nanometer Designs,” IEEE Trans. Electron Devices, vol. 49, no. 11, pp. 2001-2007, Nov. 2002. [30] M.L. Mui, K. Banerjee and A. Mehrotra, “A Global Interconnect Optimization Scheme for Nanometer Scale VLSI with Implications for Latency, Bandwidth, and Power Dissipation,” IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 195-203, Feb. 2004. [31] L. Xiao-Chun, and et al., “Global Interconnect Width and Spacing Optimization for Latency, Bandwidth and Power Dissipation,” IEEE Trans. Electron Devices, vol. 52, no. 10, pp. 2272-2279, Oct. 2005. [32] H. Kaul, D. Sylvester, D. Blaauw, T. Mudge, and T. Austin, “DVS for On-chip Bus Designs Based on Timing Error Correction,” in Proceeding ofDesign, Automation and Test in Europe, 2005, vol. 1, pp. 80- 85, Mar. 2005. [33] V.V. Deodhar and J.A. Davis, “Optimization of Throughput Performance for Low-Power VLSI Interconnects,” IEEE Trans. Very Large Scale Integration Systems, vol. 13, no. 3, pp. 308-318, Mar. 2005. [34] Serial ATA International Organizations, “Serial ATA Revision 2.5,” October 2005. [35] L. Chong-Fatt, Y. Kiat-Seng, and S. S. Rofail, “Sub-1V bootstrapped CMOS driver for giga-scale-integration era,” Electronics Letters, vol. 35, no. 5, Mar. 1999. [36] J. C. Garcia, J. A. Montiel-Nelson, and S. Nooshabadi, “A single-capacitor bootstrapped power-efficient CMOS driver,’’ IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 53, no. 9, pp. 877-881, Sep. 2006. [37] J. W. Kim , and B. S. Kong, “Low-voltage bootstrapped CMOS drivers with efficient conditional bootstrapping,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 55, no. 6, pp. 556-560, Jun. 2008. [38] S. Hanson, M. Seok, D. Sylvester, and D. Blaauw, “Nanometer device scaling in sub-threshold logic and SRAM,” IEEE Trans. on Electron Devices, vol. 55, pp. 175-185, no. 1, Jan. 2008. [39] B. H. Calhoun, A. Wang, and A. P. Chandrakasan, “Modeling and sizing for minimum energy operation in subthreshold circuits,” IEEE Journal of Solid-State Circuits, vol. 40, no. 9, pp. 1178-1186, Jan. 2005. [40] H. J. M. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits,” IEEE Journal of Solid-State Circuits, vol. sc-19, no. 4, pp. 468-473, Aug. 1984. [41] V. V. Deodhar and J. A. Davis, “Optimal voltage scaling, repeater insertion, and wire sizing for wave-pipelined global interconnects,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 55, no. 4, pp. 1023-1030, May 2008. [42] R. Ho, T. Ono, R. D. Hopkins, A. Chow, J. Schauer, F. Y. Liu, and R. Drost, “High speed and low energy capacitively driven on-chip wires,” IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp. 52–60, Jan. 2008. [43] E. Mensink, D. Schinkel, E. A. M. Klumperink, E. van Tuijl, and B.Nauta,“Power Efficient Gigabit Communication Over Capacitively Driven RC-Limited On-Chip Interconnects,” IEEE Journal of Solid-State Circuits, vol. 45, no. 2, pp. 447-457, Feb. 2010. [44] Y. Zhang, X. Hu, A. Deutsch, A. E. Engin, J. F. Buckwalter, and C. K. Cheng, “ Prediction and Comparison of High-Performance On-Chip Global Interconnection,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 7, pp. 1154-1166, Jul. 2011. [45] Y. Ho, C. Chang and C. Su, “Design of a Sub-threshold-Supply Bootstrapped CMOS Inverter Based on an Active Leakage Current Reduction Technique,” IEEE Trans. on Circuits System. II, vol. 59, no.1, pp. 55-59, Jan. 2012. [46] International Technology Roadmap for Semiconductors (2006). Available: http://public.itrs.net/ [47] Y. T. Lin, Y. S. Lin, C. H. Chen, H. C. Chen, Y. C. Yang, and S. S. Lu, “A 0.5-V biomedical system-on-a-chip for intrabody communication system,” IEEE Trans. Industrial Electronics, vol. 58, no. 2, pp. 690-699, Feb. 2011. [48] J. Kwong, and A. P. Chandrakasan, “An energy-efficient biomedical signal processing platform,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1742-1753, Jul. 2011. [49] J. Shen and P. R. Kinget, “A 0.5V 1.1MS/sec 6.3fJ/conversion-step SAR-ADC with tri-level comparator in 40nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 787-795, Apr. 2008. [50] A. Shikata, R. Sekimoto, T. Kuroda, and H. Ishikuro, “A 0.5V 1.1MS/sec 6.3fJ/conversion-step SAR-ADC with tri-level comparator in 40nm CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2011, pp. 262–263. [51] H. H. Hsieh, C. T. Lu, and L. H. Lu, “A 0.5-V 1.9-GHz low-power phase-locked loop in 0.18-um CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2007, pp. 164–165. [52] S. A. Yu and P. Kinget, “A 0.65V 2.5 GHz fractional-N frequency synthesizer in 90 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 304–306. [53] K. H. Cheng, Y. C. Tsai, Y. L. Lo, and J. S. Huang, “A 0.5-V 0.4-2.24-GHz inductorless phase-locked loop in a system-on-chip,” IEEE Trans. Circuits and Systs. I, vol. 58, no. 5, pp.849-859, May. 2011. [54] M. C. Chen, J. Y. Yu, and C. Y. Lee, “A Sub-100μW area-efficient digitally-controlled oscillator based on hysteresis delay cell topologies,” in Asian Solid-State Circuits Conf. (ASSCC), Dig. Tech. Papers, Nov. 2009, pp. 89–92. [55] W. Khalil, S. Shashidharan, T. Copani, S. Chakraborty, S. Kiaei, and B. Bakkaloglu, “A 700uA 405-MHz all-digital fractional-frequency-locked loop for ISM band applications,” IEEE Trans. Microwave Theory and Techniques, vol. 59, no. 5, pp.1319-1326, May. 2011. [56] D. H. Oh, D. S. Kim, S. H. Kim, D. K. Jeong , and W. C. Kim, “A 2.8Gb/s all-digital CDR with a 10b monotonic DCO,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 222–224. [57] S. Lin, and S. Liu, “A 1.5GHz all-digital spread-spectrum clock generator,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp.3111-3119, Nov. 2009. [58] V. Kratyuk, P. Hanumolu, U. K. Moon, and K. Mayaram, “A design procedure for all-digital phase-locked loops based on a charge-pump phase-locked loop analogy,” IEEE Trans. Circuits and Syst. II, vol. 54, no. 3, pp.247-251, Mar. 2007. [59] P. Dudek, S. Szczepanski, and J. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp.240-247, Feb. 2000. [60] Y. Ho, Y. S. Yang, and C. Su, “A 0.2-0.6 V ring oscillator design using bootstrap technique,” in Asian Solid-State Circuits Conf. (ASSCC), Dig. Tech. Papers, Jeju, Nov. 2011, pp. 333-336. [61] N. Weste and D. Harris, CMOS VLSI Design. Boston, MA: Addison-Wesley, 2005 [62] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001 [63] K. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652-660, Mar. 2005. [64] J. A. Tierno, A. V. Rylyakov, and D. J. Friedman, “A wide power supply range, wide tuning range, all static CMOS all digital PLL in 65 nm SOI,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 42-51, Jan. 2008. [65] Y. L. Lo, and W. B. Yang, T. S. Chao, and K. H. Cheng, “Designing an ultralow-voltage phase-locked loop using a bulk-driven technique,” IEEE Trans. Circuits and Syst. II, vol. 56, no. 5, pp. 339-343, May 2009. [66] C. T. Lu, H. H. Hsieh, and L. H. Lu, “A low-power quadrature VCO and its application to a 0.6-V 2.4-GHz PLL,” IEEE Trans. Circuits and Syst. I, vol. 57, no. 4, pp. 793–802, Apr. 2010. [67] W. Liu, W. Li, P. Ren, C. Lin, S. Zhang, and Y. Wang, “A PVT tolerant 10 to 500 MHz all-digital phase-locked loop with coupled TDC and DCO,” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 314-321, Feb. 2010.
|