跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 18:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何盈杰
研究生(外文):Ho, Yingchieh
論文名稱:應用於近臨界電壓晶片資料傳輸之拔靴帶式電路技術
論文名稱(外文):Bootstrapped Circuit Techniques for Near-Subthreshold On-chip Data Link.
指導教授:蘇朝琴
指導教授(外文):Su, Chauchin
學位類別:博士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:99
中文關鍵詞:低電壓低功率次臨電壓拔靴帶式電路
外文關鍵詞:Low voltageLow powerSubthresholdBootstrapped circuits
相關次數:
  • 被引用被引用:0
  • 點閱點閱:629
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
近年來,「環保綠能、永續生存」是近年來各界發展的重點。對電子產品而言,電池是能量的主要來源,延長電池的壽命可減少電池的消耗;另一方面,使用低功率設計,讓電路能降低功率消耗並延長電池的壽命。根據 P = fCV2 的理論中,同時降低操作電壓、減少電容負載的多重作用下,使得動態功率可達到好幾個羃次方 (Order) 的下降。為了達到低功率的效果,降低操作電壓是最直覺又有效的方法。甚至,有許多研究是將電路操作在近臨界區(Near-threshold)附近或直接在次臨界區裡操作。奈米技術已經廣泛地運用在低功耗的應用上,包括RF、Analog、AD/DA、與MPU等,功率更低的還有生理信號檢測的相關設計。充分利用奈米技術中元件負載減小的特性,以及次臨界區電流的極限。
然而近臨界電路的設計將元件操作在近臨界區,目的是大幅降低功耗,達到所謂的效率能源(Energy-efficient)的特色。但是它有幾個主要的瓶頸:第一、操作速度慢,多應用於生醫晶片或其它慢速的系統。第二、靜態漏電功率消耗的問題在近臨界區下更顯得嚴重。第三、嚴重的製程漂移,影響著良率與量產成本。
在本論文裡,我們提出了近臨界電壓系統單晶片(System on Chip, SoC)上的資料傳輸(Data link)電路設計。並提出一系列全新的靴帶式技術(Bootstrap technique),解決近臨界區電路設計的問題。我們提出的靴帶式技術,主要概念是使電路可提供雙向的升壓功能,所謂的雙向,是同時對P型跟N型元件作用,一邊大幅地增加驅動力,一邊抑制靜態漏電。相較於傳統電路操作在近臨界區,可以有兩個order的改善。另一個的優點就是靴帶式技術可以使在次臨界區操作電壓下的電路,操作在一般的三極管區 (Triode region),使得電路模型更加精確。我們從電路的蒙地卡羅分析就可以清楚地了解到製程漂移因此大幅減少。
我們一共呈現了四個相關的電路:(1)一個應用於時脈網路(clock network)裡,可主動減少漏電流之靴帶式反相器。操作在0.2V時,即便是1cm晶片上連線的時脈樹,能提供10MHz的穩定時脈,能加以抑制低電壓操作時嚴重的靜態漏電流。此外,本設計使用閘極升壓(Gate Boosting)的概念,使大部分元件操作在導通區,大幅降低製程漂移。(2)一個應用在晶片匯流排(on-chip bus)上,能有效抑制符號干擾(Inter-Symbol Interference, ISI)的靴帶式中繼器設計,VDD = 0.3V時,單一個channel最高可以傳輸100Mbps的資料傳輸率 (使用210-1 PRBS),即便在VDD = 0.1V時,仍有0.8Mbps的資料傳輸率。(3)接著,我們尋求最佳的有效能源設計,提出的高倍升壓的中繼器,提供三倍與四倍升壓功能之預驅動器(Pre-driver)來提供最佳的有效能源設計,而不會犧牲操作速度。我們應用在晶片匯流排中的中繼器,僅使用VDD = 0.15V的操作電壓,最高可達到5Mbps的資料傳輸率,每位元的能源消耗僅有35.2fJ。(4)最後,我們提出了靴帶式振盪器(bootstrapped ring oscillator),並完成了一個可操作在近臨界電壓的全數位鎖位迴路(All-digital PLL, ADPLL)。操作在0.5V時,這個ADPLL可提供480MHz的輸出頻率,僅有78μW的功率消耗,而在0.25V時,仍可提供44.8MHz輸出頻率,消耗2.4μW的功率。

For the sustainable electronic devices, ultra-low power design is essential to prolong the battery lives. According to P = fCV2, scaling the supply voltage down is the most effective way to reduce the power consumption. According to the forecast from the International Technology Roadmap for Semiconductors (ITRS), the supply voltage will be scaled to 0.5V for low-power applications within the next generation. Scaling the supply voltage near the threshold voltage is the most favorable solution for low-power designs. On the other hand, Nano-scaled devices exceed the limit of the speed in the near-threshold region based on small device loading. Nano-scaled process is broadly applied to ultra-low power designs, which includes RF, AD/DA, MPU, especially in biomedical applications. Emerging embedded biomedical applications have once more pushed the low-power designs into another extreme case.
In order to achieve the feature of the energy-efficient operation, the designs are applied to work using near-threshold supply. However, near-threshold circuit design is definitely challenging because the driving capability (Ion), which is limited to apply to slow system. Then, the static leakage power becomes severe, and decreases the Ion/Ioff ratio. Moreover, process variations are degraded significantly, affecting the circuit performance, the power efficiency, and the fabrication yield.
In this dissertation, we propose circuit designs on-chip data link system using near-threshold supply. In order to improve the design issues in the near-threshold region, we have developed several bootstrapped circuits. The main contribution of the proposed bootstrapped techniques is to boost the gate voltage at the both sides, which means to boost the gate voltage of the PMOS and NMOS at the same time. The proposed circuit is applicable in both increasing driving ability by boosting signals into super-threshold region and reducing the leakage current. While the circuit is operated in sub-threshold region, two-order improvement is achieved. In addition, the bootstrapped circuits are operated in triode region with the near-threshold supply. Consequently, that explain why the process variation affects the proposed design scheme to a lesser extent. We can verify it with simulations of Monte Carlo analysis.
Four build blocks using bootstrapped circuits in on-chip data link have been proposed. The first one is a bootstrapped CMOS inverter applied to on-chip clock network. In addition to improving the driving ability, a large gate voltage swing from -VDD to 2VDD suppresses the sub-threshold leakage current. The test chip is able to achieve 10MHz operation under 200mV VDD; the power consumption is 1.01μW. The Monte Carlo analysis results indicate that a sigma of delay time is only 2.9ns at 0.2V operation. Then, an ISI-suppressed bootstrapped repeater applied to on-chip bus is proposed. The bootstrapped CMOS repeaters are inserted to drive a 10mm on-chip bus. Additionally, a precharge enhancement scheme increases the speed of the data transmission, and a leakage current reduction technique suppresses ISI jitter. The measured results demonstrate that for a 10-mm on-chip bus, it can achieve 100Mbps data rate at 0.3V, and even 0.8 Mbps at 0.1V. The third section investigates the performance of the interconnects with repeater insertion in the sub-threshold region. A 3X CMOS pre-driver and a 4X one are proposed to enhance the driving capability. As compared to the conventional repeater, the proposed ones have higher energy efficiency. The measured results show that the 3X (4X) pre-drivers can achieve 5Mbps (1.5Mbps) data rate at 0.15V with an efficiency of 35.2fJ (32.8fJ). The last section, we present a near-threshold supply ADPLL with bootstrapped digitally-controlled ring oscillator (BDCO) that allows an ADPLL to operate with a near-threshold supply. The BDCO is composed of a bootstrapped ring oscillator (BTRO) and a weighted thermometer-controlled resistance network (WTRN). The proposed bootstrapped delay cell generates large gate voltage swing to improve the driving capability significantly. The boosted output swing keeps the transistors operated in the linear region to provide high linearity of the output frequency as function of VDD even using a near-threshold supply. According to the transferring character of the BTRO, WTRN provides linear control while sweeping the supply voltage. The proposed ADPLL oscillates from 36.8 to 480MHz with a power consumption of 2.4-78μW under a supply voltage of 0.25-0.5V.

摘要 iii
ABSTRACT v
Table of Contents ix
Chapter 1 Introduction 1
1.1. Challenges in Nano-Scaled Near-threshold Design 1
1.2. Near-threshold On-chip Data Link 2
1.3. Organization of the Dissertation 3
Chapter 2 Background Review 4
2.1. Effects in Nano-scaled Process [6] 4
2.1.1. Short-Channel Effect 4
2.1.2. Narrow-Width Effect 5
2.1.3. Sub-threshold Leakage [6, 9] 6
2.1.4. Drain-Induced Barrier Lowering [6] 6
2.1.5. Gate-Induced Drain Leakage [6, 10] 7
2.1.6. Gate Leakage [11] 7
2.2. Challenges in Ultra Low-voltage Designs 8
2.2.1. Degradation of Driving Capability 8
2.2.2. Leakage Power and Ion-to-Ioff Ratio [8, 12] 8
2.2.3. Process, Voltage and Temperature Variation 9
2.3. Low-voltage Design Techniques 10
2.3.1. Bootstrap Techniques 10
2.3.2. Dynamic Voltage and Frequency Scaling 12
2.3.3. Multi-threshold MOS Control 13
2.3.4. Bulk-driven Technique 13
2.4. Summary 13
Chapter 3 Near-threshold Clock Network 15
3.1. Overview of On-chip Interconnect 16
3.1.1. RC-Interconnect with repeater insertion 16
3.1.2. Time constant, power dissipation and FoM 17
3.2. Proposed Active Leakage Reduction Bootstrapped Inverter 18
3.3. Detail Evaluation and Discussion 20
3.3.1. Boosting Efficiency 21
3.3.2. Reduction of Leakage Current 22
3.3.3. Delay Time Analysis 25
3.3.4. Delay Time Analysis of Process Variation 27
3.4. Implementation and Experimental Results 28
3.4.1. Implementation of the Bootstrap Capacitor 28
3.4.2. Chip Implementation and Measurement 29
3.5. Summary 31
Chapter 4 Near-threshold On-chip Bus 32
4.1. Proposed On-chip Bus Architecture 32
4.2. ISI-suppressed Bootstrapped Driver 33
4.3. Detailed Evaluation and Comparisons 35
4.3.1. Boosting Efficiency 35
4.3.2. Leakage Current Reduction 36
4.3.3. Leakage Power Analysis 36
4.3.4. ISI Suppression 41
4.3.5. Energy Efficiency 43
4.3.6. Monte Carlo Simulations 45
4.4. Experimental Setup and Measurement 47
4.4.1. Chip implementation 47
4.4.2. Measured Waveforms 48
4.4.3. Leakage Power Measurement 53
4.5. Summary 55
Chapter 5 High-boosting Pre-driver 56
5.1. Proposed High-boosting Pre-driver 56
5.2. High-boosting Pre-driver in Long Interconnects 59
5.2.1. Leakage Current Reduction 59
5.2.2. Energy Efficiency 59
5.2.3. Boosting Efficiency 62
5.2.4. Monte Carlo Simulations 63
5.3. Experiment and Measurement Results 65
5.3.1. Chip implementation 65
5.3.2. Measured Waveforms 66
5.4. Summary 68
Chapter 6 Near-threshold ADPLL 70
6.1. Architecture of Proposed All-Digital PLL 71
6.1.1. PFD, PS and TDC 71
6.1.2. DLF 72
6.1.3. Bootstrapped Digitally-Controlled Oscillator 73
6.1.3.1. Bootstrapped Ring Oscillator 74
6.1.3.2. Weighted-Thermometer Code Control 75
6.1.4. SDM 76
6.2. Detailed Evaluation on BTRO 77
6.2.1. Power Analysis of BTRO 77
6.2.2. Linearity Analysis of BTRO 78
6.3. Experimental Results and Comparisons 81
6.3.1. Chip Implementation 81
6.3.2. Measured Results 83
6.3.3. Comparisons 86
6.4. Conclusions 87
Chapter 7 Conclusions 98
References 98
VITA 98
Publication List 98
[1] A. Wang and A.P. Chandrakasan, “A 180-mV subthreshold FFT processor using a minimum energy design methodology,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 310-319, Jan. 2005.
[2] J. Wang, J. Chen, Y. Wang, and C. Yeh, “A 230 mV-to-500 mV 375 KHz-to-16 MHz 32b RISC core in 0.18 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Digest of Tech. Papers, Feb. 2007, pp. 294-604.
[3] M. H. Tu, J. Y. Lin, M. C. Tsai, S. J. Jou, and C. T. Chuang, “Single-Ended Subthreshold SRAM With Asymmetrical Write/Read-Assist,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 57, no. 12, pp. 3039-3047, Dec. 2010.
[4] D.C. Daly, and A.P. Chandrakasan,” A 6-bit, 0.2 V to 0.9 V highly digital flash ADC with comparator redundancy,” IEEE Journal of Solid-State Circuits, vol. 44, no. 11, pp. 3030-3038, Nov. 2009.
[5] W. H. Ma, J. C. Kao, V. S. Sathe, and M. C. Papaefthymiou, “187 MHz sub-threshold-supply charge-recovery FIR,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 793-803, Apr. 2010.
[6] K. Roy, S. Mukhopadhyay, and H. M. Meimand, “Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits,” Proceeding of the IEEE, vol. 91, no. 2, pp. 305-327, Feb. 2003.
[7] C. Y. Lu, and J. M. Sung, “Reverse short-channel effects on threshold voltage in sub-micrometer salicide devices,” IEEE Trans. Electron Device Letters, vol. 10, no. 10, pp. 446-448, Jan. 1989.
[8] T. H. Kim, J. Keane, H. Eom, and C. H. Kim, “Utilizing reverse short-channel effect for optimal subthreshold circuit design,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 15, no. 7, pp. 821-829, Jul. 2004.
[9] S. Hanson, M. Seok, D. Sylvester, and D. Blaauw, “Nanometer device scaling in sub-threshold logic and SRAM,” IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 175-185, Jan. 2008.
[10] X. Yuan, J. E. Park, J. Wang, E. Zhao, D. C. Ahlgren, T. Hook, J. Yuan, V. W. C. Chan, H. Shang, C. H. Liang, R. Lindsay, S. Park, and H. Choo, “Gate-induced-drain leakage current in 45 nm CMOS technology,” IEEE Trans. Device and Materials Reliability, vol. 8, no. 3, pp. 501-508, Sep. 2008.
[11] D. Lee, D. Blaauw , and D. Sylvester, “Gate oxide leakage current analysis and reduction for VLSI circuits,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 12, no. 2, pp. 155-166, Feb. 2004.
[12] N. Verma, and A. P. Chandrakasan, “A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 141-149, Jan. 2008.
[13] D. Bol, R. Ambroise, D. Flandre, , and J. D. Legat, “Interests and limitations of technology scaling for subthreshold logic,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 17, no. 10, pp. 1508-1519, Oct. 2009.
[14] S. S. Sapatnekar, “Overcoming variations in nanometer-scale technologies,” IEEE J. Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 1, pp. 5-18, Mar. 2011.
[15] S. R. Vemuru, “Effects of simultaneous switching noise on the tapered buffer design,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 5, no. 3, pp. 290-300, Sep. 1997.
[16] J. H. Lou and J. B. Kuo, “A 1.5-V full-swing bootstrapped CMOS large capacitive-load driver circuit suitable for low-voltage CMOS VLSI,” IEEE J. Solid-State Circuits, vol. 32, no. 1, pp. 119-121, Jan. 1997.
[17] J. Kil, J. Gu, and C. H. Kim, “A high-speed variation-tolerant interconnect technique for sub-threshold circuits using capacitive boosting,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 16, no. 4, pp. 456-465, Apr. 2008.
[18] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “A dynamic voltage scaled microprocessor system,” IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1571–1580, Nov. 2000.
[19] S. Das, C. Tokunaga, S. Pant, W. Ma, S. Kalaiselvan, K. Lai, D. M. Bull, and D. Blaauw, “RazorII: in situ error detection and correction for pvt and ser tolerance,” IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 32–48, Jan. 2009.
[20] A. Drake, R. Senger, H. Deogun, G. Carpenter, S. Ghiasi, T. Ngyugen, N. James, and M. Floyd, “A distributed critical-path timing monitor for a 65 nm high-performance microprocessor,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Digest of Tech. Papers, Feb. 2007, pp. 398–399.
[21] M. Nakai, S. Akui, K. Seno, T. Meguro, T. Seki, T. Kondo, A. Hashiguchi, H. Kawahara, K. Kumano, and M. Shimura, “Dynamic voltage and frequency management for a low power embedded microprocessor,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 28–35, Jan. 2005.
[22] J. T. Kao and A. P. Chandrakasan, “Dual-threshold voltage techniques for low-power digital circuits,” IEEE J. Solid-State Circuits, vol. 35, no. 7, pp. 1009-1018, Jul. 2000.
[23] Y. Pu, J. P. Gyvez, H. Corporaal, and Y. Ha, “An ultra-low-energy multi-standard JPEG co-processor in 65 nm CMOS with sub/near threshold supply voltage,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 668-680, Jan. 2010.
[24] S. Mutoh, S. Shigematsu, Y. Matsuya, H. Fukuda, and J. Yamada, “A 1 V multi-threshold voltage CMOS DSP with an efficient power management technique for mobile phone application,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Digest of Tech. Papers, Feb. 1996, pp. 168–171.
[25] J. M. Carrillo, G. Torelli, R. Perez-Aloe, J. F. Duque-Carrillo, “ 1-V rail-to-rail CMOS Opamp with improved bulk-driven input stage” IEEE J. Solid State Circuits, vol. 42, no. 3, pp. 508-517, Mar. 2007
[26] J. T. Kao, M. Miyazaki, and A. P. Chandrakasan, “A 175-MV multiply-accumulate unit using an adaptive supply voltage and body bias architecture” IEEE J. Solid State Circuits, vol. 37, no. 11, pp. 1545-1554, Nov. 2002
[27] Y. L. Lo, and W. B. Yang, T. S. Chao, and K. H. Cheng, “Designing an Ultralow-Voltage Phase-Locked Loop Using a Bulk-Driven Technique,” IEEE Trans. Circuits and Syst. II, vol. 56, no. 5, pp. 339-343, May 2009
[28] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001
[29] K. Banerjee and A. Mehrotra, “A Power-Optimal Repeater Insertion Methodology for Global Interconnects in Nanometer Designs,” IEEE Trans. Electron Devices, vol. 49, no. 11, pp. 2001-2007, Nov. 2002.
[30] M.L. Mui, K. Banerjee and A. Mehrotra, “A Global Interconnect Optimization Scheme for Nanometer Scale VLSI with Implications for Latency, Bandwidth, and Power Dissipation,” IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 195-203, Feb. 2004.
[31] L. Xiao-Chun, and et al., “Global Interconnect Width and Spacing Optimization for Latency, Bandwidth and Power Dissipation,” IEEE Trans. Electron Devices, vol. 52, no. 10, pp. 2272-2279, Oct. 2005.
[32] H. Kaul, D. Sylvester, D. Blaauw, T. Mudge, and T. Austin, “DVS for On-chip Bus Designs Based on Timing Error Correction,” in Proceeding ofDesign, Automation and Test in Europe, 2005, vol. 1, pp. 80- 85, Mar. 2005.
[33] V.V. Deodhar and J.A. Davis, “Optimization of Throughput Performance for Low-Power VLSI Interconnects,” IEEE Trans. Very Large Scale Integration Systems, vol. 13, no. 3, pp. 308-318, Mar. 2005.
[34] Serial ATA International Organizations, “Serial ATA Revision 2.5,” October 2005.
[35] L. Chong-Fatt, Y. Kiat-Seng, and S. S. Rofail, “Sub-1V bootstrapped CMOS driver for giga-scale-integration era,” Electronics Letters, vol. 35, no. 5, Mar. 1999.
[36] J. C. Garcia, J. A. Montiel-Nelson, and S. Nooshabadi, “A single-capacitor bootstrapped power-efficient CMOS driver,’’ IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 53, no. 9, pp. 877-881, Sep. 2006.
[37] J. W. Kim , and B. S. Kong, “Low-voltage bootstrapped CMOS drivers with efficient conditional bootstrapping,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 55, no. 6, pp. 556-560, Jun. 2008.
[38] S. Hanson, M. Seok, D. Sylvester, and D. Blaauw, “Nanometer device scaling in sub-threshold logic and SRAM,” IEEE Trans. on Electron Devices, vol. 55, pp. 175-185, no. 1, Jan. 2008.
[39] B. H. Calhoun, A. Wang, and A. P. Chandrakasan, “Modeling and sizing for minimum energy operation in subthreshold circuits,” IEEE Journal of Solid-State Circuits, vol. 40, no. 9, pp. 1178-1186, Jan. 2005.
[40] H. J. M. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits,” IEEE Journal of Solid-State Circuits, vol. sc-19, no. 4, pp. 468-473, Aug. 1984.
[41] V. V. Deodhar and J. A. Davis, “Optimal voltage scaling, repeater insertion, and wire sizing for wave-pipelined global interconnects,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 55, no. 4, pp. 1023-1030, May 2008.
[42] R. Ho, T. Ono, R. D. Hopkins, A. Chow, J. Schauer, F. Y. Liu, and R. Drost, “High speed and low energy capacitively driven on-chip wires,” IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp. 52–60, Jan. 2008.
[43] E. Mensink, D. Schinkel, E. A. M. Klumperink, E. van Tuijl, and B.Nauta,“Power Efficient Gigabit Communication Over Capacitively Driven RC-Limited On-Chip Interconnects,” IEEE Journal of Solid-State Circuits, vol. 45, no. 2, pp. 447-457, Feb. 2010.
[44] Y. Zhang, X. Hu, A. Deutsch, A. E. Engin, J. F. Buckwalter, and C. K. Cheng, “ Prediction and Comparison of High-Performance On-Chip Global Interconnection,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 7, pp. 1154-1166, Jul. 2011.
[45] Y. Ho, C. Chang and C. Su, “Design of a Sub-threshold-Supply Bootstrapped CMOS Inverter Based on an Active Leakage Current Reduction Technique,” IEEE Trans. on Circuits System. II, vol. 59, no.1, pp. 55-59, Jan. 2012.
[46] International Technology Roadmap for Semiconductors (2006). Available: http://public.itrs.net/
[47] Y. T. Lin, Y. S. Lin, C. H. Chen, H. C. Chen, Y. C. Yang, and S. S. Lu, “A 0.5-V biomedical system-on-a-chip for intrabody communication system,” IEEE Trans. Industrial Electronics, vol. 58, no. 2, pp. 690-699, Feb. 2011.
[48] J. Kwong, and A. P. Chandrakasan, “An energy-efficient biomedical signal processing platform,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1742-1753, Jul. 2011.
[49] J. Shen and P. R. Kinget, “A 0.5V 1.1MS/sec 6.3fJ/conversion-step SAR-ADC with tri-level comparator in 40nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 787-795, Apr. 2008.
[50] A. Shikata, R. Sekimoto, T. Kuroda, and H. Ishikuro, “A 0.5V 1.1MS/sec 6.3fJ/conversion-step SAR-ADC with tri-level comparator in 40nm CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2011, pp. 262–263.
[51] H. H. Hsieh, C. T. Lu, and L. H. Lu, “A 0.5-V 1.9-GHz low-power phase-locked loop in 0.18-um CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2007, pp. 164–165.
[52] S. A. Yu and P. Kinget, “A 0.65V 2.5 GHz fractional-N frequency synthesizer in 90 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 304–306.
[53] K. H. Cheng, Y. C. Tsai, Y. L. Lo, and J. S. Huang, “A 0.5-V 0.4-2.24-GHz inductorless phase-locked loop in a system-on-chip,” IEEE Trans. Circuits and Systs. I, vol. 58, no. 5, pp.849-859, May. 2011.
[54] M. C. Chen, J. Y. Yu, and C. Y. Lee, “A Sub-100μW area-efficient digitally-controlled oscillator based on hysteresis delay cell topologies,” in Asian Solid-State Circuits Conf. (ASSCC), Dig. Tech. Papers, Nov. 2009, pp. 89–92.
[55] W. Khalil, S. Shashidharan, T. Copani, S. Chakraborty, S. Kiaei, and B. Bakkaloglu, “A 700uA 405-MHz all-digital fractional-frequency-locked loop for ISM band applications,” IEEE Trans. Microwave Theory and Techniques, vol. 59, no. 5, pp.1319-1326, May. 2011.
[56] D. H. Oh, D. S. Kim, S. H. Kim, D. K. Jeong , and W. C. Kim, “A 2.8Gb/s all-digital CDR with a 10b monotonic DCO,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 222–224.
[57] S. Lin, and S. Liu, “A 1.5GHz all-digital spread-spectrum clock generator,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp.3111-3119, Nov. 2009.
[58] V. Kratyuk, P. Hanumolu, U. K. Moon, and K. Mayaram, “A design procedure for all-digital phase-locked loops based on a charge-pump phase-locked loop analogy,” IEEE Trans. Circuits and Syst. II, vol. 54, no. 3, pp.247-251, Mar. 2007.
[59] P. Dudek, S. Szczepanski, and J. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp.240-247, Feb. 2000.
[60] Y. Ho, Y. S. Yang, and C. Su, “A 0.2-0.6 V ring oscillator design using bootstrap technique,” in Asian Solid-State Circuits Conf. (ASSCC), Dig. Tech. Papers, Jeju, Nov. 2011, pp. 333-336.
[61] N. Weste and D. Harris, CMOS VLSI Design. Boston, MA: Addison-Wesley, 2005
[62] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001
[63] K. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652-660, Mar. 2005.
[64] J. A. Tierno, A. V. Rylyakov, and D. J. Friedman, “A wide power supply range, wide tuning range, all static CMOS all digital PLL in 65 nm SOI,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 42-51, Jan. 2008.
[65] Y. L. Lo, and W. B. Yang, T. S. Chao, and K. H. Cheng, “Designing an ultralow-voltage phase-locked loop using a bulk-driven technique,” IEEE Trans. Circuits and Syst. II, vol. 56, no. 5, pp. 339-343, May 2009.
[66] C. T. Lu, H. H. Hsieh, and L. H. Lu, “A low-power quadrature VCO and its application to a 0.6-V 2.4-GHz PLL,” IEEE Trans. Circuits and Syst. I, vol. 57, no. 4, pp. 793–802, Apr. 2010.
[67] W. Liu, W. Li, P. Ren, C. Lin, S. Zhang, and Y. Wang, “A PVT tolerant 10 to 500 MHz all-digital phase-locked loop with coupled TDC and DCO,” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 314-321, Feb. 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊