跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 19:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馮仰靚
論文名稱:具加速度時間延遲之飛彈的強健導引律設計
論文名稱(外文):Robust Missile Guidance Law Design with Time Delay in Acceleration
指導教授:梁耀文梁耀文引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:64
中文關鍵詞:導引律順滑模控制時間延遲積分型順滑模控制目標估測誤差
外文關鍵詞:Guidance lawSliding mode controlTime delayIntegral type sliding modeTarget estimation error
相關次數:
  • 被引用被引用:1
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討結合積分型順滑模(integral type sliding mode)技術與傳統順滑模(sliding mode)技術於飛彈強健導引律設計之議題。本論文考量之不確定性干擾因素的來源包括有,目標估測誤差及因經過飛行控制系統而造成的加速度時間延遲。利用所設計之強健導引律可使閉迴路系統對目標估測誤差以及加速度時間延遲具有良好的補償效果。此外所提出之強健導引律可允許工程師針系統之性能要求設計無干擾系統(nominal system)的(最佳)導引律,使得包含時間延遲與估測誤差的系統(uncertain system)閉迴路狀態響應與無干擾系統閉迴路響應近似。最後經由模擬驗證證明此導引律可以達到期望的效能。
This paper studies the design of missile guidance law using the combination of SMC and ISMC technologies. The presented guidance law is shown to be able to compensate for the presence of uncertainty, including target estimation error, and time lag in acceleration caused by the flight control system. Besides, the presented scheme possesses a remarkable flexibility of allowing the engineer to select a desired guidance law for the nominal system (i.e., system without uncertainty and time delay) so that the state response of the overall uncertain time delay guidance system is close to that of the selected nominal closed-loop guidance system. Simulation results demonstrate the benefits of the presented scheme.
中 文 摘 要 i
英 文 摘 要 ii
誌 謝 iii
目 錄 iv
圖 目 錄 vi
第1章 緒論 1
1.1 研究背景與動機 1
1.2 論文架構 5
第2章 預備知識 6
2.1 順滑模控制技術介紹 6
2.2 積分型順滑模控制技術介紹 11
2.3 飛彈與目標相對運動模型介紹 16
2.3.1 基礎動力學 17
2.3.2 飛彈座標系 20
2.3.3 飛彈與目標相對運動模型 21
2.4 比例導引律介紹 23
第3章 積分型順滑模控制技術應用於導引律設計 27
3.1 問題描述 27
3.2 導引律設計 28
3.3 模擬驗證 32
第4章 順滑模控制技術應用於具加速度延遲之導引律設計 35
4.1 問題描述 35
4.2 導引律設計 36
4.3 模擬驗證 38
第5章 結合ISMC與SMC技術應用於飛彈導引律設計 49
5.1 問題描述 49
5.2 導引律設計 50
5.3 模擬驗證 53
第6章 結論與未來方向 60
參考文獻 62

[1]
Becker, K.,“Closed-form Solution of Pure Proportional Navigation,”IEEE Trans. Aerosp. Electron. Syst., vol. 26, no.3, pp. 526-532, 1990.
[2]
Yuan, P. J. and Chern, J. S.,“Solutions of True Proportional Navigation for Maneuvering and Nonmaneuvering Targets,”J. Guid. Control Dyn., vol.15, pp. 268-271, 1992.
[3]
M. Guelman,“A qualitative study of proportional navigation,”IEEE Trans. Aerosp. Electron. Syst., vol.AES-7, no.4, pp. 637-643, 1971.
[4]
Siouris, G. M. Missile Guidance and Control Systems. New York: Springer, 2004.
[5]
Ryoo, C. K., Cho, H. J., and Tahk, M. J.“Optimal guidance laws with terminal impact angle constraint,”Journal of Guidance, Control and Dynamics, vol.28, pp.724-732, 2005.
[6]
Lee, J. I., Jeon, I. S., and Tahk, M. J.“Guidance law to control impact time and angle,”IEEE Transactions on Aerospace and Electronic Systems, vol.43, no.1, pp.301-310, 2007.
[7]
Siouris, G. M. and Leros, A. P.“Minimum-time intercept guidance for tactical missiles,”Control-Theory and Advance Technology, vol.4 pp.251-263, 1988.
[8]
M. Guelman and J. Shinar,“Optimal guidance law in the plane,”AIAA J. Guid. Control Dynam., vol. 7, pp. 471-476, 1984.
[9]
Medeiros, J.A. and Crames, T.L:“Fuzzy logic approach to head-on missile intercepts,”Proc. SPIE- Int. Soc. Opt. Eng., pp. 319-324, 1992.
[10]
Shieh, C. S.“Nonlinear rule-based controller for missile terminal guidance,”IEEE Proceedings on Control Theory and Applications, vol.150, no.1, pp.45-48, 2003.
[11]
Oshman, Y. and Arad, D.“Differential-game-based guidance law using target orientation observations,”IEEE Transactions on Aerospace and Electronic Systems,vol.42, no.1, pp.316-326, 2006.
[12]
Anderson G M.“Comparison of optimal control and differential game intercept missile guidance law,”Journal of Guidance and Control, vol.4, pp.109-115, 1981.
[13]
Chaoyong LI, Wuxing Jing, Hui Wang, and Zhiguo QI.“Gain-Varying Guidance Algorithm using Differential Geometric Guidance Command,”IEEE Transactions on Aerospace and Electronic Systems, vol.46, no.2, pp.725-736, 2010.
[14]
Chang-Kyung Ryoo, Yoon-Hwan Kim, Min-Jea Tahk, and Keeyoung Choi.“A Missile Guidance Law Based on Sontag’s Formula to Intercept Maneuvering Targets,”International Journal of Control, Automation, and Systems, vol. 5, pp. 397-409, 2007.
[15]
Yang C D. and Chen H Y.“Nonlinear H_∞ robust guidance law for homing missile,”Journal of Guidance. Control, and Dynamics, vol.21, pp.882-890, 1998.
[16]
Chen, B.S., Chen, Y.Y., and Lin, C.L.:“Nonlinear fuzzy H_∞ guidance law with saturation of actuators against manoeuvring targets,”IEEE Trans. Control Syst. Technol., vol.10, no.6, pp.769-779, 2002.
[17]
C.-S. Shieh.“Design of three-dimensional missile guidance law via tunable nonlinear H_∞ control with saturation constraint,”IET Control Theory vol.1, pp.756-763, 2007.
[18]
Zhou, D., Mu, C., and Xu, W.,“Adaptive Sliding-Mode Guidance of a Homing Missile,” Journal of Guidance, Control, and Dynamics, vol.22, pp.589–594, 1999.
[19]
Levant, A.“Higher-order sliding modes, differentiation and output-feedback control,” International Journal of Control, vol.76, pp.924-941, 2003.
[20]
Levant, A.“Homogeneity approach to high-order sliding mode design,”Automatica, vol.41, 823-830, 2005.
[21]
Paul Zarchan. Tactical and Strategic Missile Guidance, Ed., 2007.
[22]
R. A. DeCarlo, S. H. Zak, and G. P. Matthews, “Variable structure control of nonlinear multivariable systems: a tutorial,"Proceedings of the IEEE, vol. 76, no.3, pp. 212-232, 1988.
[23]
J. Y. Hung, W. Gao, and J. C. Hung,“Variable structure control: a survey,”IEEE Transactions on Industrial Electronics, vol. 40, no.1, pp. 2-22, 1993
[24]
H. K. Khalil, Nonlinear System, 2nd, Englewood Cliffs, NJ: Prentice-Hall, 1996.
[25]
R. A. Horn and C. R. Johnson, Matrix Analysis, 2009.
[26]
F. Castanos and L. Fridman,“Analysis and design of integral sliding manifolds for systems with unmatched perturbations,” IEEE Transactions on Automatic Control, vol. 51, no.5, pp. 853-858, 2006.
[27]
W.-J. Cao and J.-X. Xu,“Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems,” IEEE Transactions on Automatic Control, vol. 49, no.8, pp.1355-1360, 2004.
[28]
Ferdinand P. Beer, E. Russell Johnston, and Jr. William E. Clausen, Vector mechanics for engineers, 2008.
[29]
Ciann-Dong Yang,“Analytical solution of 3D true proportional navigation,”IEEE Transactions on Aerospace and Electronic Systems, vol.32, no.4 pp.1509-1522, 1996.
[30]
George M. Siouris, Missile guidance and control system, 2004.
[31]
A. Dhar, D. Ghose,“Capture Region for Realistic TPN guidance law,” IEEE Transactions on Aerospace and Electronic Systems, vol. 29, no.3, pp.995-1003, 1993.
[32]
Pin-Jar Yuan,“Solutions of generalized proportional navigation with maneuvering and nonmaneuvering targets,”IEEE Transactions on Aerospace and Electronic Systems, vol. 31, no.1, pp.469-474, 1995

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊