跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 10:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳凌宇
研究生(外文):Wu, LinYu
論文名稱:改變點火正時探討沼氣發電機燃燒穩定性及其性能
論文名稱(外文):The Experimental Study on Combustion Stability and Performance of Biogas Power Generation by Changing Spark Timing
指導教授:陳俊勳陳俊勳引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:88
中文關鍵詞:沼氣發電沼氣水氣點火正時燃燒穩定性
外文關鍵詞:Biogas generationWater vapor in biogasSpark timingCombustion stability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:557
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
論文在台中月眉台糖養豬場測試30kW沼氣發電機。研究計畫其一,為了提高引擎效率,安裝除濕機以祛除沼氣中多餘的水分,此外量測除濕後沼氣的確切成分及其相對應之濃度。計畫其二,安裝完整之點火系統,包括火星塞式壓力感測器、旋轉編碼器及點火正時訊號擷取。實驗結果顯示,在沼氣除濕後發電功率明顯提升;在沼氣供給量為220L/min時,沼氣除濕後發電功率比未除濕之沼氣提高5.9%。本發電機最佳點火正時為BTDC13度,在此角度下操作引擎可以達到最大之發電功率以及熱效率,同時其燃燒穩定性也較穩定(CoVIMEP較小)。提前點火或延後點火,除了發電功率及熱效率下降以外,亦使燃燒穩定性變差(CoVIMEP較大)。另外,實驗發現燃燒越穩定,沼氣甲烷使用率越高,反之亦然。
This study tested a 30kW-generator in a small biogas plant in Taiwan Sugar swine farm in Taichung. The biogas after desulfurization process still contains the water vapor. Hence, it is necessary to remove the water vapor in the intake biogas before it is fueled into the engine. In this study, the first work is to dehumidify the water vapor in intake biogas. In addition to these, the detailed intake biogas constitutes and their concentrations are also measured in order to get the real data. Secondly, install a complete ignition system, consisting spark plugs pressure sensor and rotary encoder, to record the in-cylinder pressure and crank angle of piston cylinder. In the present study, the engine power output of dehumidified biogas provides up to 5.9% with respective to the humid biogas at biogas supply rate of 220L/min at excess air ratio λ=1. Besides, the optimum spark timing of present engine locates at BTDC13 degree, where supply the highest power generation and thermal efficiency.
Delaying or advancing the optimum spark timing leads to poorer power outputs. The spark timing of BTDC13 has lower coefficient of variation in indicated mean effective pressure (CoVIMEP) than delayed and advanced ones, where engine performs more stable indicated mean effect pressure (IMEP) during combustion. In addition, it found that the lower CoVIMEP makes the higher CH4 consumption ratio.
ABSTRACT(CHINESE) I
ABSTRACT(ENGLISH) II
CONTENTS III
LIST OF TABLES V
LIST OF FIGURES VII
Chapter 1 Introduction 1
1.1 Motivation and Background 1
1.2 Literature Review 4
1.3 Scope of Present Study 11
Chapter 2 Biogas Generation System 12
2.1 Process of Biogas Production 12
2.2 Utlization of Biogas 12
2.3 Engines 13
2.3.1 Four-stroke Gas Engine and Diesel Engine 14
2.3.2 Stirling Engine 15
2.3.3 Gas Turbine 15
2.3.4 Micro Gas Turbine 15
2.3.5 Fuel Cell 16
Chapter 3 Experimental Apparatus and Procedures 17
3.1 Experimental Equipment Layout 17
3.1.1 Engine 17
3.1.2 Air Flow Meter (VA-400) 19
3.1.3 Biogas Flow Meter (TF-4000) 20
3.1.4 Dehumidifier (RD15) 20
3.1.5 Temperature with Humidity Transmitter (JHTD3010-N) 21
3.1.6 Gas Analyzer (ECA450) 21
3.1.7 Methane Concentration Analyzer (GuardCH4) 21
3.1.8 Spark Plug Pressure Sensor (BKR5E-11 and 112A05) 21
3.1.9 Ignition System 22
3.1.9.1 Tachometer (VC4000DAQ) 23
3.1.9.2 Spark Plug Pressure Sensor (BKR5E-11 and 112A05). 23
3.1.9.3 Charge Converter (PCB 422E05) 23
3.1.9.4 Rotary Encoder (HPN-6A) 23
3.2 The Theoretical Calculation 24
3.2.1 Excess Air Ratio 24
3.2.2 Consumption of CH4 26
3.2.3 Thermal Efficiency 27
3.2.4 Combustion Stability 29
3.3 Dehumidifying Water Vapor of Intake Fuel 30
3.4 The Effect of Spark Timing 31
Chapter 4 Results and Discussion 33
4.1 Effect of Water Vapor of Intake Fuel 33
4.2 Addition of Ignition System 42
4.2.1 Power Generation, Thermal Efficiency and Waste Gas Analysis 42
4.2.2 In-cylinder Pressure Analysis 46
4.3 Comparison with Other Researches 53
Chapter 5 Conclusions and Recommendations 55
5.1 Conclusions 55
5.2 Recommendations 56
Reference 58
[1] A. Brown, “2010 Survey of Energy Resources”, World Energy Council, 360-361, 2010.
[2] Falin Chen, Shyi-Min Lu , Eric Wang, Kuo-Tung Tseng, “Renewable energy in Taiwan”, Renewable and Sustainable Energy Reviews, 14 ,2029-2038,2010.
[3] Wen-Tien Tsai, Che-I Lin, “Overview analysis of bioenergy from livestock manure management in Taiwan”, Renewable and Sustainable Energy Reviews, 13, pp. 2682-2688, 2009.
[4] Wei-Tsung Lin, “A Research for Electricity Generation by Using Biogas from Swine Manure for a Farm Power Requirement”, June 2010.
[5] Sheng-Rung Huang, “The Experimental Study on Biogas Power Generation Enhanced by Using Waste Heat to Preheat Inlet Gases ”, June 2011.
[6] Jung-Jeng Su, Bee-Yang Liu, Yuan-Chie Chang, “Emission of greenhouse gas from livestock waste and wastewater treatment in Taiwan”, Agriculture Ecosystems and Environment, 95, pp. 253-263, 2003.
[7] Shang-Shyng Yang, Chung-Ming Liu, Yen-Lan Liu, “Estimation of methane and nitrous oxide emission from animal production sector in Taiwan during 1990–2000”, Chemosphere, 52, pp. 1381-1388, 2003.
[8] E. Porpatham, A. Ramesh, B. Nagalingam, “Investigation on the effect of concentration of methane in biogas when used as a fuel for a spark ignition engine”, Fuel, 87, pp.1651–1659, 2008.
[9] Anil Singh Bika, Luke Franklin, David B. Kittelson, “Engine knock and combustion characteristics of a spark ignition engine operating with varying hydrogen and carbon monoxide proportions”, Hydrogen Energy, 36, pp.5143-5152, 2011.
[10] Aparna Arunachalam, Daniel B. Olsen, “Experimental evaluation of knock characteristics o producer gas”, Biomass and Bioenergy, 37, pp.169-176, 2012
[11] Deepak Agarwal, Shrawan Kumar Singh, Avinash Kumar Agarwal, “Effect of exhaust gas recirculation (EGR) on performance, emissions, deposits and durability of a constant speed compression ignition engine”, Applied Energy, 88, pp.2900-2907, 2011.
[12] Erjiang Hu, Zuohua Huang, Bing Liu, Jianjun Zheng, Xiaolei Gu, “Experimental study on combustion characteristics of a spark-ignition engine fueled with natural gas-hydrogen blends combining with EGR”, Hydrogen Energy, 34, pp. 1035-1044, 2009.
[13] S. Swami Nathan, J.M. Mallikarjuna, A. Ramesh, “Effects of charge temperature and exhaust gas re-circulation on combustion and emission characteristics of an acetylene fuelled HCCI engine”, 89, pp.515-521, 2010.
[14] S. Szwaja, K.R. Bhandary, J.D. Naber, “Comparisons of hydrogen and gasoline combustion knock in a spark ignition engine”, Hydrogen Energy, 32, pp.5076-5087, 2007.
[15] Cheolwoong Park, Seunghyun Park, Yonggyu Lee, Changgi Kim, Sunyoup Lee, Yasuo Moriyoshi, “Performance and emission characteristics of a SI engine fueled by low calorific biogas blended with hydrogen” , Hydrogen Energy, 36, pp.10080-10088, 2011.
[16] O. Badr, N. Alsayed and M. Manaf, “A parametric study on the lean misfiring and knocking limits of gas-fueled spark ignition engines”,18,pp.579-594,1998.
[17] Paola Helena Barros Zarante , Jose Ricardo Sodre, “Evaluating carbon emissions reduction by use of natural gas as engine fuel”, Journal of Natural Gas Science and Engineering,1, pp. 216-220, 2009

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top