跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/24 18:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林震洋
研究生(外文):Lin, Chen-Yang
論文名稱:利用共振腔振盪衰減光譜法研究CH3OO在C-H伸展振動模光區的紅外吸收光譜
論文名稱(外文):Infrared absorption spectra of CH3OO in the C-H stretch vibrational modes region detected with cavity ring-down spectroscopy
指導教授:李遠鵬李遠鵬引用關係
指導教授(外文):Lee, Yuan-Pern
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:107
中文關鍵詞:共振腔振盪衰減光譜法甲基過氧自由基紅外吸收光譜
外文關鍵詞:cavity ring-down spectroscopymethylperoxy radicalinfrared absorption spectra
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
利用波長為193nm的雷射光解流動的CH3C(O)CH3/O2混合氣體和波長為248nm的雷射光解流動的CH3I/O2混合氣體,並以共振腔振盪衰減法取得其共同產物CH3OO的紅外吸收光譜。吾人將2953.4cm-1和3020.7cm-1的吸收峰分別指派為CH3OO的ν2和ν9,與黃登瑞等人得到同為氣態環境下的CH3OO低解析度光譜之ν2和ν9的位置2954cm-1和3020cm-1一致。此結果亦和Nandi與Morrison兩研究組分別在Ar間質與He奈米液滴環境下得到ν2和ν9的相對位置一致,並與B3LYP/aug-cc-pVTZ計算得到之非簡諧振動頻率相差在1%以內。在吾人光譜中並未能指認出可能是ν1的吸收峰,可能是ν1譜線較弱且結構缺乏一明顯的吸收峰所致。此外,吾人以近似對稱陀螺分子之模式,分析CH3OO的轉動譜線結構而得振動基態及ν2和ν9的轉動常數,和Endo研究組以及理論計算得到之結果一致。吾人利用SpecView光譜模擬程式模擬ν2和ν9之光譜並與實驗光譜做對照,亦模擬ν1並討論其可能的躍遷原點位置。對ν2而言,模擬光譜大致上和實驗光譜吻合,但因模擬軟體未考慮ν2可能受到coriolis coupling之影響,導致模擬光譜和實驗光譜在2940-2950cm-1的光區範圍內有所差異。而ν9的實驗光譜在3014cm-1和3017cm-1出現沒有對應到模擬光譜之譜線,且在3025-3050cm-1之光區,實驗和模擬光譜並不一致,吾人推測這些不一致的譜線應是受到ν1吸收之影響。經由改變ν1模擬光譜的躍遷原點並將其和實驗光譜比較,吾人暫時將ν1的躍遷原點指派為3031.7cm-1。此外ν9的半高寬比SpecView模擬程式預測的半高寬為大,應是和ν1譜線重疊,或是CH3OO內轉動運動造成的譜線分裂所致。而此內轉動運動所引起的譜線分裂,亦是造成ν1的Q分枝和模擬光譜不一致的可能原因。ν2的平行躍遷扭動分裂極小,因此譜線半高寬和模擬光譜所得之結果一致。
We employed a cavity ringdown spectrometer with a tunable infrared OPO/OPA laser with a bandwidth of 0.02 cm-1 to record the absorption spectra of methylperoxy radicals (CH3OO) in the range 2930-3050 cm-1. Methylperoxy radicals were produced by irradiating a flowing mixture of CH3I and O2 with emission at 248 nm from a KrF excimer laser or a flowing mixture of CH3C(O)CH3 and O2 with emission at 193 nm from an ArF excimer laser. Two absorption bands with origins at 2953.4 cm-1 and 3020.7 cm-1 were observed; they are assigned to ν2 (symmetric CH3 stretching) and ν9 (antisymmetric CH2 stretching) modes of CH3OO, respectively. We analyzed the rotational structures of the ν2 and ν9 bands by simply treating CH3OO as a prolate symmetric top, and determined the rotational constants both in the ground state and in the vibrationally excited state. We predicted vibrational wavenumbers and rotational parameters for the upper and lower vibrational states, and the mixing ratio among a-, b-, c-types of bands of CH3OO with the B3LYP/aug-cc-pVTZ density-functional theory. The rotational contours for the ν1, ν2 and ν9 bands of CH3OO were simulated with the SpecView software. For the ν2 band, the simulation agrees satisfactorily with the experimental observations except for the intense peaks with regular spacing about 2.4 cm-1 in the range 2940-2950 cm-1. For the ν9 band, the simulation result is consistent with the experimental observations in the region 3000-3020 cm-1 but not in the region 3020-3050 cm-1. The discrepancy might be due to the interference from the ν1 band. That ν1 band is unobserved is likely due to its relatively small intensity. We temporarily assigned the ν1 band to be at 3031.7 cm-1 by matching the simulated spectra with the peaks which do not correspond to the ν9 band.
第一章 緒論 1
參考文獻 10
第二章 實驗原理與技術 12
2.1 共振腔振盪衰減法(cavity ringdown spectroscopy, CRDS)簡介 12
2.1.1 共振腔振盪衰減法的發展與歷史 12
2.1.2 光子彈模型 (photon bullet model) 14
2.1.3 靈敏度 (sensitivity) 16
2.1.4 腔模 (cavity modes) 17
2.1.5 雷射頻寬效應 (laser bandwidth effect) 20
2.1.6 模匹配 (mode matching) 22
2.1.7 CRDS技術的優點 22
2.2 可調頻紅外雷射光源 (tunable IR laser) 24
2.2.1 混頻(frequency-mixing)作用 24
2.2.2 光學參量振盪器(optical parametric oscillation, OPO) 27
2.2.3 光學參量放大器(optical parametric amplifier, OPA) 28
參考文獻 34
第三章 實驗系統與實驗步驟 36
3.1 實驗裝置 36
3.1.1 可調頻紅外雷射光源 36
3.1.2 反應系統 37
3.1.3 光解雷射 38
3.1.4 其他周邊儀器 38
3.2 實驗前準備事項 39
3.2.1 可調頻紅外雷射光源的對正 39
3.2.2 振盪衰減腔體的對正 42
3.2.3 模匹配之步驟 44
3.2.4 氣體流量校正 45
3.3 實驗步驟 46
3.3.1 周邊儀器時序控制 46
3.3.2 實驗條件 47
3.3.3 LabView程式設定 50
參考文獻 57
第四章 結果與討論 58
4.1 理論計算 58
4.2 對稱陀螺剛體轉子(symmetric top rigid rotor)模型 59
4.3 實驗結果與討論 61
4.3.1 ν2振動模的分析 65
4.3.2 ν9振動模的分析 72
4.3.3 ν1振動模的討論 74
4.4 結論 76
參考文獻 106
第一章

[1] P. D. Lightfoot, R. A. Cox, J. N. Crowley, M. Destriau, G. D. Hayman, M. E. Jenkin, G. K. Moortgat, and F. Zabel, Atmos. Environ. 26A, 1805 (1992).
[2] S. Madronich, J. Greenberg, and S. Paulson, in Atmospheric Chemistry and Global Change, edited by G. P. Brasseur, J. J. Orlando, and G. S. Tyndall (Oxford University Press, New York, 1999), pp. 325.
[3] G. L. Bras, in Chemical Processes in Atmospheric Oxidation (Springer, Berlin, 1997), Vol. 3, pp. 13.
[4] S. B. Bertman, J. M. Roberts, D. D. Parrish, M. P. Buhr, P. D. Goldan, W. C. Kuster, F. C. Fehsenfeld, S. A. Montzka, and H. J. Westberg, Geophys. Res. 100, 22805 (1995).
[5] I. R. Slagle and D. Gutman, J. Am. Chem. Soc. 107, 5342 (1985).
[6] S. P. Walch, Chem. Phys. Lett. 215, 81 (1993).
[7] J. M. W. Chase, C. A. Davies, J. J. R. Downey, D. J. Fruirip, R. A. McDonald, and A. N. Syverud, J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).
[8] J. A. Jafri and D. H. Phillips, J. Am. Chem. Soc. 112, 2586 (1990).
[9] R. Zhu, C. C. Hsu, and M. C. Lin, J. Chem. Phys. 115, 195 (2001).
[10] J. K. Thomas, J. Phys. Chem. 71, 1919 (1967).
[11] D. A. Parkes, D. M. Paul, C. P. Quinn, and R. C. Robson, Chem. Phys. Lett. 23, 425 (1973).
[12] C. Anastasa, I. V. M. Smith, and D. Parkes, J. Chem. Soc., Faraday Trans. 1 74, 1693 (1978).
[13] H. Adachi and N. Basco, Int. J. Chem. Kinet. 14, 1125 (1982).
[14] E. N. Sharp, P. Rupper, and T. A. Miller, Phys. Chem. Chem. Phys. 10, 3955 (2008).
[15] J. E. Hunziker and H. R. Wendt, J. Chem. Phys. 64, 3488 (1976).
[16] M. B. Pushkarsky, S. J. Zalyubovsky, and T. A. Miller, J. Chem. Phys. 112, 10695 (2000).
[17] S. J. Blanksby, T. M. Ramond, G. E. Davico, M. R. Nimlos, S. Kato, V. M. Bierbaum, W. C. Lineberger, G. B. Ellison, and M. Okumura, J. Am. Chem. Soc. 123, 9585 (2001).
[18] H. B. Fu, Y. J. Hu, and E. R. Bernstein, J. Chem. Phys. 125, 7 (2006).
[19] C.-Y. Chung, C.-W. Cheng, Y.-P. Lee, H. Y. Liao, E. N. Sharp, P. Rupper, and T. A. Miller, J. Chem. Phys. 127, 14 (2007).
[20] P. Ase, W. Bock, and A. Snelson, J. Phys. Chem. 90, 2099 (1986).
[21] S. Nandi, S. J. Blanksby, X. Zhang, M. R. Nimlos, D. C. Dayton, and G. B. Ellison, J. Phys. Chem. A 106, 7547 (2001).
[22] A. M. Morrison, J. Agarwal, H. F. Schaefer, and G. E. Douberly, J. Phys. Chem. A (2012) (unpublished).
[23] D.-R. Huang, L.-K. Chu, and Y.-P. Lee, J. Chem. Phys. 127, 7 (2007).
[24] Private communication with Prof. Y. Endo.
[25] P. D. Lightfoot, R. Lesclaux, and B. Veyret, J. Phys. Chem. 94, 700 (1990).
[26] D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, T. Just, J. A. Kerr, M. J. Pilling, D. Stocker, J. Troe, W. Tsang, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data 34, 757 (2005).
[27] S. W. Benson and P. S. Nangia, Acc. Chem. Res. 12, 223 (1979).
[28] H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, J. Phys. Chem. 85, 877 (1981).

第二章

[1] K. W. Busch and M. A. Busch, Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique. (American Chemical Society, Washington, DC, 1999).
[2] T. Yu and M. C. Lin, J. Am. Chem. Soc. 115, 4371 (1993).
[3] A. P. Yalin, Surla, V. Opt. Lett. 30, 3219 (2005).
[4] A. J. Hallock, E. S. F. Berman, and R. N. Zare, J. Am. Chem. Soc. 125, 1158 (2003).
[5] S. Logunov, Appl. Opt. 40, 1570 (2001).
[6] J. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, Phys. Rev. Lett. 94, 213402 (2005).
[7] J. M. Herbelin, J. A. Mckay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, and D. J. Benard, Appl. Opt. 19, 144 (1980).
[8] D. Z. Anderson, J. C. Frisch, and C. S. Masser, Appl. Opt. 23, 1238 (1984).
[9] A. O'Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[10] D. Romanini, A. A. Kachanov, and F. Stoeckel, Chem. Phys. Lett. 270, 538 (1997).
[11] P. Zalicki and R. N. Zare, J. Chem. Phys. 102, 2708 (1995).
[12] J. T. Hodges, J. P. Looney, and R. D. van Zee, J. Chem. Phys. 105, 10278 (1996).
[13] A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
[14] J. T. Hodges, J. P. Looney, and R. D. van Zee, Appl. Opt. 38, 3951 (1999).
[15] S. M. Newman, I. C. Lane, A. J. Orr-Ewing, D. A. Newnham, and J. Ballard, J. Chem. Phys. 110, 10749 (1999).
[16] A. Yariv, Quantum Electronics, 3rd ed. (John Wiley & Sons, New York, 1975).
[17] H. H. Telle, A. G. Ureña, and R. J. Donovan, Laser Chemistry: Spectroscopy, Dynamics and Applications (John Wiley & Sons, Chicester, U.K., 2007).

第三章

[1] S. Eden, P. Limão-Vieira, S. V. Hoffmann, and N. J. Mason, Chem. Phys. 331, 232 (2006).
[2] M. Nobre, A. Fernandes, F. Ferreira da Silva, R. Antunes, D. Almeida, V. Kokhan, S. V. Hoffmann, N. J. Mason, S. Eden, and P. Limao-Vieira, Phys. Chem. Chem. Phys. 10, 550 (2008).
[3] M. Mark Brouaŕd, M. T. Macpherson, M. J. Pilling, J. M. Tulloch, and A. P. Williamson, Chem. Phys. Lett. 113, 413 (1985).
[4] D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, T. Just, J. A. Kerr, M. J. Pilling, D. Stocker, J. Troe, W. Tsang, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data 34, 757 (2005).
[5] J. Troe, J. Phys. Chem. 83, 114 (1979).
[6] J. Troe, Ber. Bunsenges. Phys. Chem. 87, 161 (1983).
[7] R. G. Gilbert, K. Luther, and J. Troe, Ber. Bunsenges. Phys. Chem. 87, 169 (1983).

第四章

[1] M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision A. 02, Gaussian, Inc., Wallingford, CT (2009).
[2] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
[3] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 41, 785 (1988).
[4] D.-R. Huang, L.-K. Chu, and Y.-P. Lee, J. Chem. Phys. 127, 7 (2007).
[5] S. J. Blanksby, T. M. Ramond, G. E. Davico, M. R. Nimlos, S. Kato, V. M. Bierbaum, W. C. Lineberger, G. B. Ellison, and M. Okumura, J. Am. Chem. Soc. 123, 9585 (2001).
[6] H. B. Fu, Y. J. Hu, and E. R. Bernstein, J. Chem. Phys. 125, 7 (2006).
[7] R. Zhu, C. C. Hsu, and M. C. Lin, J. Chem. Phys. 115, 195 (2001).
[8] R. Janoschek and M. J. Rossi, Int. J. Chem. Kinet. 34, 550 (2002).
[9] L. Feria, C. Gonzalez, and M. Castro, Int. J. Quantum Chem. 99, 605 (2004).
[10] A. M. Morrison, J. Agarwal, H. F. Schaefer, and G. E. Douberly, J. Phys. Chem. A (2012).
[11] P. Ase, W. Bock, and A. Snelson, J. Phys. Chem. 90, 2099 (1986).
[12] S. Nandi, S. J. Blanksby, X. Zhang, M. R. Nimlos, D. C. Dayton, and G. B. Ellison, J. Phys. Chem. A 106, 7547 (2001).
[13] Private communication with Prof. Y. Endo.
[14] V. Stakhursky and T. A. Miller, SpecView: Simulation and Fitting of Rotational Structure of Electronic and Vibronic Bands, 56th OSU International Symposium on Molecular Spectroscopy, Columbus, Ohio, 2001.
[15] M. Mark Brouaŕd, M. T. Macpherson, M. J. Pilling, J. M. Tulloch, and A. P. Williamson, Chem. Phys. Lett. 113, 413 (1985).
[16] S. Hadrich, S. Hefter, B. Pfelzer, T. Doerk, P. Jauernik, and J. Uhlenbusch, Chem. Phys. Lett. 256, 83 (1996).
[17] R. Perez, J. M. Brown, Y. Utkin, J. Han, and R. F. Curl, J. Mol. Spectrosc. 236, 151 (2006).
[18] J.-X. Han, Y. G. Utkin, H.-B. Chen, L. A. Burns, and R. F. Curl, J. Chem. Phys. 117, 6538 (2002).
[19] J. Han, S. Hu, H. Chen, Y. Utkin, J. M. Brown, and R. F. Curl, Phys. Chem. Chem. Phys. 9, 3725 (2007).
[20] G. M. P. Just, A. B. McCoy, and T. A. Miller, J. Chem. Phys. 127, 11 (2007).
[21] X. Wang and D. S. Perry, J. Chem. Phys. 109, 10795 (1998).
[22] H. H. Nielsen, Phys. Rev. 40, 445 (1932).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top