跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 01:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林亮毅
研究生(外文):Lin, Liang-Yi
論文名稱:光電廢棄物資源化製備奈米吸附材料及其應用於二氧化碳捕獲之研究
論文名稱(外文):Optoelectronic industrial waste derived porous adsorbents and their application for the capture of CO2 greenhouse gas
指導教授:白曛綾
指導教授(外文):Bai, Hsun-Ling
學位類別:博士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:143
中文關鍵詞:廢棄物資源化光電廢棄粉末中孔洞矽材料氟化鈉二氧化碳氣膠輔助製程
外文關鍵詞:resource recoveryoptoelectronic industrial waste powdermesoporous silica materialssodium fluoridecarbon dioxideaerosol assisted process
相關次數:
  • 被引用被引用:2
  • 點閱點閱:857
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:0
隨著京都議定書正式生效,同時二氧化碳捕獲及封存技術 (Carbon dioxide Capture and Storage, 簡稱CCS) 也於2005年被聯合國之IPCC組織評估為可行方式之一。其中利用固體吸附劑捕獲二氧化碳被視為是現行許多捕獲技術中最具有潛力之一;在眾多吸附劑中,中孔洞二氧化矽因其有高比表面積、可調整之孔徑大小與高抗熱性,目前逐漸被應用至二氧化碳控制。雖然中孔洞二氧化矽藉助於奈米科技的創新與技術上之改良,使其材料製程與發展得以快速進化發展,不過該類型材料價格昂貴且其製造過程亦較費時費能,產物取得較沸石與活性碳困難,目前應用中孔洞氧化矽於二氧化碳控制之研究不若傳統沸石與活性碳廣泛。此外為解決全球溫室效應問題所需削減之二氧化碳氣體排放量相當龐大,因此若採用CCS技術將必須消耗大量之地球資源。另一方面,近年來隨著半導體與光電產業的快速發展,大量含矽之廢棄粉末亦伴隨而生。此類型之廢棄物質輕且體積龐大,需額外花費較多之成本委託廠商進行後續廢棄物處理。相對的,如能有效利用廢棄物,將之加以資源化製成多孔材料,則不僅具有成本效益,且可解決廢棄物處理與處置問題。
本研究旨在利用光電粉末廢棄物做為二氧化矽之前驅物,分別透過液相水熱法以及氣相製程製備中孔洞二氧化矽,並將其應用做為吸附劑進行二氧化碳氣體捕獲之研究。研究中亦探討中孔洞吸附劑孔洞特性對於二氧化碳吸附效能之影響以及利用廢棄粉末製備吸附劑之經濟效益,以評估取代商業吸附劑之可行性。研究結果指出以廢棄粉末做為矽源,透過離子型界面活性劑十六烷基三甲基溴化銨(CTAB)作為模板並加入適量之氫氟酸與氫氧化銨可於常溫下製備出具有高比表面積(788 m2g-1)、大孔徑(4.5 nm)以及大孔洞體積(1.1 cm3g-1)之中孔材料MCM-41(DU)-F。為了進一步縮減吸附劑製備所需之成本,本研究亦嘗試利用非離子型之三崁式界面活性劑F127做為模板;相對於陽離子型界面活性劑(CTAB)不僅在價格上較便宜外,在環境汙染程度上也相對較低。而研究成果顯示,界面活性劑F127濃度於再生製備中孔洞材料MS上有顯著的影響。當F127/Si莫耳比例為0.001時,MS材料為具有籠狀(cage-like)之中孔材料;而當當F127/Si莫耳比例提升於0.0023時,MS材料則是轉變為具有囊泡狀(cellular foam)之材料,而其孔徑與孔體積亦大幅提升。
另一方面,本研究亦開發出利用常溫鹼萃取法可將廢棄粉末分離為矽酸鹽水溶液與沉澱物;沉澱物之成分經鑑定後主要為高純度之氟化鈉(>90%)。由於氟化鈉是工業上常用之化學品,因此所回收之高純度氟化鈉可提供二次再利用的機會;而經分離所得之矽酸鹽水溶液則可作為合成二氧化矽材料之前驅物。透過此萃取法能夠將廢棄粉末轉變為兩種具有高度經濟價值的物質。而利用矽酸鹽經由水熱法所製造之中孔材料MCM-41(AF)其物化特性與利用純化學品所製備出MCM-41(NaSi)之特性相似,顯示由TFT-LCD粉末廢棄物所製得之矽酸鹽的確為一具有潛力的二氧化矽來源。本研究亦延伸以粉末廢棄物所製得之矽酸鹽之製備與應用範疇,以無機鹽類做為模板透過連續式氣相製程製備出MSP(AS)以及MSS(HNO3)中孔材料。在價錢成本估算部分中,使用廢棄物粉末合成之中孔材料MSS(HNO3)可相較於使用化學品合成SBA-15節省約95 %的價錢,更為使用化學品合成MCM-41僅2%的價錢。因此利用廢棄矽酸鹽為前驅物以一步氣膠合成方式預期將可大幅減少化學材料成本以及製造時間,如此本研究所製得之奈米材料即可大量製造,並應用於捕獲CO2溫室氣體上。
在二氧化碳吸附捕獲測試結果顯示,中孔洞材料其孔徑大小以及孔體積對於二氧化碳捕獲效能有顯著的影響。經迴歸分析,可知孔洞體積為最影響吸附效能之關鍵因子,其次為孔洞大小,比表面積之影響則相對較小。其中中孔材料MSS(HNO3)在二氧化碳入流濃度10%、吸附溫度60oC時吸附量可達到122 mg-CO2/g-adsorbent,高於利用純化學品所合成之中孔洞材料MCM-41與SBA-15。因此結果顯示利用廢棄物所合成之樣品MSS(HNO3)具有價格便宜、高二氧化碳吸附量以及快速之製備時間。本研究所製得之奈米材料因此可大量製造,並應用於捕獲CO2溫室氣體上。綜合成本考量和後端二氧化碳應用,使用此材料在未來二氧化碳捕捉的應用上具有前瞻性。
The carbon dioxide (CO2) capture and storage (CCS) technologies have received out-breaking concerns after the Kyoto Protocol came into force in 2005. Among capturing technologies, adsorption is regarded as one of the feasible approaches which can limit the CO2 emission. Mesoporous silica materials with high surface area, large pore size and large pore volume are considered as good candidates for CO2 capture. However, the requirements of tedious processing time and expensive manufacture costs strongly limited their applications. Furthermore, the global emission quantity of CO2 is so huge that it may consume tremendous amount of resource materials to capture the CO2 greenhouse gas. On the other hand, with the evolution of semiconductor and optoelectronic industries, huge amounts of siliceous waste powder are significantly increased. Such waste powders are light-density with bulky volume and are thus difficult to be transported and disposed. Therefore, additional expenses on waste treatment and landfill disposal are needed. So if the captured sorbent can be obtained from product wastes, the cost-effectiveness of the CO2 capture technology and the waste treatment and disposal problem will be resolved simultaneously.
This study intends to reutilize the waste powder as an alternative resource for the production of mesoporous silica materials via either solution precipitation method or aerosol spray approach. The structural properties and cost-effectiveness of the recycled materials on CO2 adsorption performance was investigated as well. The results showed that the waste powder can be directly converted in to mesoporous silica MCM-41(DU)-F with high surface area (788 m2g-1), large pore size (4.5 nm) and large pore volume (1.1 cm3g-1) with the assistance of ionic surfactant of CTAB, hydrofluoric acid as well as ammonium hydroxide. Through similar pathway, silica materials with hierarchically mesocellular structures can be facilely prepared by using single F127 surfactant. The concentrations of hydrofluoric acid and F127 were found to strongly affect the structural properties of the recycled materials.
On the other hand, a low-temperature alkali extraction was developed to effectively separate the silicate supernatant and the sediment of sodium fluoride (NaF) from the waste powder. The obtained sediment containing high purity of NaF (>90%), which provides further reuse possibility since NaF is widely applied in chemical industry. The supernatant is a valuable silicate source for synthesizing mesoporous silica material. In other words, the optoelectronic waste powder can be converted into two valuable resources, the supernatant as the silica precursor and the sediment of sodium fluoride. The mesoporous MCM-41 produced from the waste-derived silicate, namely MCM-41(AF), possessed high specific surface areas (1069 m2/g), narrow pore size distributions (3.0 nm) and large pore volumes (0.97 cm3/g), similar with those of the MCM-41(NaSi) fabricated using commercial silica precursors. This clearly suggests that the silicate supernatant from waste powder can be potential silica resource.
This study further extends the preparation of mesoporous materials using waste-derived silicate supernatant as precursors. It was demonstrated that mesoporous MSP(AS) and MSS(HNO3) materials can be synthesized by employing inorganic salts as templating media. The cost analysis shows that the synthesized material of MSS(HNO3) is about five percent of the price of SBA-15 and two percent of the MCM-41 made from commercial silica precursors.
Furthermore, the correlation between CO2 adsorption capacity and the pore structure properties (pore size, pore volume and specific surface area) is studied. The result of the linear regression indicates that the CO2 adsorption capacity has the strongest correlation with the total pore volume of the mesoporous materials (R2>0.9). The amine-impregnated MSS(HNO3) can achieve 122 mg/g adsorption capacity, which is superior to that of the original MCM-41(115 mg/g) and SBA-15(117) made from commercial precursors under the same conditions. The MSS(HNO3) prepared using optoelectronic industrial waste powder as the silica source via salt-templated aerosol spray approach exhibits several important advantages of simple and rapid synthesis, low manufacturing costs and superior CO2 adsorption performance. Therefore, it could be considered as potential and competitive sorbents for CO2 capture from flue gas.
CONTENTS IX
LIST OF FIGURES XI
LIST OF TABLES XVII
CHAPTER I INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Objectives and Scope 2
CHAPTER II LITERATUTR REVIEW 3
2.1 Mesoporous silica materials 3
2.1.1 MCM-41 3
2.2.1 SBA-15 4
2.3.1 Mesostructured cellular foam (MCF) 4
2.2 Carbon capture and storage (CCS) 8
2.2.1 Amine-functionalized solid sorbent for CO2 removal 9
2.2.1.1 Microporous zeolite sorbents 9
2.2.1.2 Mesoporous silica sorbents 14
2.3 Effect of pore structure on CO2 adsorption performance 18
2.4 Siliceous solid wastes derived adsorbents for CO2 capture 22
CHAPTER III SILICA MATERIALS RECOVERED FROM OPTOELECTROMIC INDUSTRIAL WASTE POWDER: ITS EXTRACTION, MODIFICATION, CHARACTERIZATION AND APPLICATION 26
CHAPTER IV DIRECT CONVERSION OF WASTE POWDER INTO MESOPOROUS SILICA MATERIALS 42
CHAPTER V AEROSOL-ASSISTED SYNTHESIS OF MESOPOROUS SILICA PARTICLES VIA THE USE OF SODIUM METASILICATE PRECURSOR 73
CHAPTER VI AEROSOL PROCESSING OF MESOPOROUS SILICA PARTICLES USING WASTE-DERIVED SILICATE 88
CHAPTER VII COMPARISON OF WASTE-BASED ADSORBENTS FOR THEIR CO2 CAPTURE PERFORMANCE 115
CHAPTER VIII CONCLUSIONS AND RECOMMENDATION 121
8.1 Conclusions 121
8.2 Recommendation for future work 122
REFERENCES 124
APPENDIX 139
[1] J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advances in CO2 capture technology--The U.S. Department of Energy’s Carbon Sequestration Program, International Journal of Greenhouse Gas Control. 2 (2008) 9–20.
[2] D. Aaron, C. Tsouris, Separation of CO2 from Flue Gas: A Review, Separation Science and Technology. 40 (2005) 321.
[3] M.M. Abu-Khader, Recent Progress in CO2 Capture/Sequestration: A Review, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 28 (2006) 1261.
[4] J.C. Chow, R. Berglund, P. Biswas, D. Eatough, P.K. Mueller, J.G. Watson, Separation and capture of CO2 from large stationary sources and sequestration in geological formations, J Air Waste Manag Assoc. 53 (2003) 643–644.
[5] S.-W. Hung, J.-M. Tsai, M.-J. Cheng, P.-C. Chen, Analysis of the development strategy of late-entrants in Taiwan and Korea’s TFT-LCD industry, Technology in Society. 34 (2012) 9–22.
[6] K.S. Hui, C.Y.H. Chao, Synthesis of MCM-41 from coal fly ash by a green approach: Influence of synthesis pH, Journal of Hazardous Materials. 137 (2006) 1135–1148.
[7] M. Bhagiyalakshmi, L.J. Yun, R. Anuradha, H.T. Jang, Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting, Journal of Hazardous Materials. 175 (2010) 928–938.
[8] C.L. Choi, M. Park, D.H. Lee, J.-E. Kim, B.-Y. Park, J. Choi, Salt-Thermal Zeolitization of Fly Ash, Environmental Science & Technology. 35 (2001) 2812–2816.
[9] M. Bhagiyalakshmi, J.Y. Lee, H.T. Jang, Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption, International Journal of Greenhouse Gas Control. 4 (2010) 51–56.
[10] D. Trong On, D. Desplantier-Giscard, C. Danumah, S. Kaliaguine, Perspectives in catalytic applications of mesostructured materials, Applied Catalysis A: General. 253 (2003) 545–602.
[11] A. Taguchi, F. Schuth, Ordered mesoporous materials in catalysis, Microporous and Mesoporous Materials. 77 (2005) 1–45.
[12] A. Sayari, Catalysis by Crystalline Mesoporous Molecular Sieves, Chemistry of Materials. 8 (1996) 1840–1852.
[13] X.S. Zhao, G.Q. (Max) Lu, G.J. Millar, Advances in Mesoporous Molecular Sieve MCM-41, Industrial & Engineering Chemistry Research. 35 (1996) 2075–2090.
[14] M. Vallet-Regi, A. Ramila, R.P. del Real, J. Perez-Pariente, A New Property of MCM-41: Drug Delivery System, Chemistry of Materials. 13 (2001) 308–311.
[15] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science. 279 (1998) 548–552.
[16] J.-S. Lee, J.-H. Kim, J.-T. Kim, J.-K. Suh, J.-M. Lee, C.-H. Lee, Adsorption Equilibria of CO2 on Zeolite 13X and Zeolite X/Activated Carbon Composite, Journal of Chemical & Engineering Data. 47 (2002) 1237–1242.
[17] D.M. Ruthven, B.K. Kaul, Adsorption of aromatic hydrocarbons in NaX zeolite. 2. Kinetics, Industrial & Engineering Chemistry Research. 32 (1993) 2053–2057.
[18] P.J.E. Harlick, F.H. Tezel, Adsorption of carbon dioxide, methane, and nitrogen: pure and binary mixture adsorption by ZSM-5 with SiO2/Al2O3 ratio of 30, Separation Science and Technology. 37 (2002) 33.
[19] M.P. Mokhonoana, N.J. Coville, Synthesis of [Si]-MCM-41 from TEOS and water glass: the water glass-enhanced condensation of TEOS under alkaline conditions, J Sol-Gel Sci Technol. 54 (2010) 83–92.
[20] L. Wang, Y. Shao, J. Zhang, M. Anpo, Improvement of the hydrothermal stability of MCM-48 mesoporous molecular sieves, Res Chem Intermed. 34 (2008) 267–286.
[21] E.M. Johansson, M.A. Ballem, J.M. Cordoba, M. Oden, Rapid Synthesis of SBA-15 Rods with Variable Lengths, Widths, and Tunable Large Pores, Langmuir. 27 (2011) 4994–4999.
[22] T.-W. Kim, R. Ryoo, K.P. Gierszal, M. Jaroniec, L.A. Solovyov, Y. Sakamoto, Characterization of mesoporous carbons synthesized with SBA-16 silica template, J. Mater. Chem. 15 (2005) 1560.
[23] C. Chen, W.-J. Son, K.-S. You, J.-W. Ahn, W.-S. Ahn, Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity, Chemical Engineering Journal. 161 (2010) 46–52.
[24] Y. Liu, T.J. Pinnavaia, Assembly of Hydrothermally Stable Aluminosilicate Foams and Large-Pore Hexagonal Mesostructures from Zeolite Seeds under Strongly Acidic Conditions, Chemistry of Materials. 14 (2002) 3–5.
[25] W.W. Lukens, P. Yang, G.D. Stucky, Synthesis of Mesocellular Silica Foams with Tunable Window and Cell Dimensions, Chem. Mater. 13 (2001) 28–34.
[26] C. Yu, B. Tian, J. Fan, G.D. Stucky, D. Zhao, Synthesis of Siliceous Hollow Spheres with Ultra Large Mesopore Wall Structures by Reverse Emulsion Templating, Chemistry Letters. 31 (2002) 62–63.
[27] Y. Liu, J. Shi, J. Chen, Q. Ye, H. Pan, Z. Shao, Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6, Microporous and Mesoporous Materials. 134 (2010) 16–21.
[28] Y. Liu, Q. Ye, M. Shen, J. Shi, J. Chen, H. Pan, Carbon Dioxide Capture by Functionalized Solid Amine Sorbents with Simulated Flue Gas Conditions, Environ. Sci. Technol. 45 (2011) 5710–5716.
[29] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature. 359 (1992) 710–712.
[30] C.-T. Hung, H. Bai, Adsorption behaviors of organic vapors using mesoporous silica particles made by evaporation induced self-assembly method, Chemical Engineering Science. 63 (2008) 1997–2005.
[31] M. Karthik, L.-Y. Lin, H. Bai, Bifunctional mesoporous Cu–Al–MCM-41 materials for the simultaneous catalytic abatement of NOx and VOCs, Microporous and Mesoporous Materials. 117 (2009) 153–160.
[32] C. Hung, H. Bai, M. Karthik, Ordered mesoporous silica particles and Si-MCM-41 for the adsorption of acetone: A comparative study, Separation and Purification Technology. 64 (2009) 265–272.
[33] M. Kruk, M. Jaroniec, A. Sayari, A Unified Interpretation of High-Temperature Pore Size Expansion Processes in MCM-41 Mesoporous Silicas, The Journal of Physical Chemistry B. 103 (1999) 4590–4598.
[34] A. Sayari, M. Kruk, M. Jaroniec, I.L. Moudrakovski, New Approaches to Pore Size Engineering of Mesoporous Silicates, Adv. Mater. 10 (1998) 1376–1379.
[35] V. Meynen, P. Cool, E.F. Vansant, Verified syntheses of mesoporous materials, Microporous and Mesoporous Materials. 125 (2009) 170–223.
[36] H. Jin, Q. Wu, C. Chen, D. Zhang, W. Pang, Facile synthesis of crystal like shape mesoporous silica SBA-16, Microporous and Mesoporous Materials. 97 (2006) 141–144.
[37] Z. Jin, X. Wang, X. Cui, A two-step route to synthesis of small-pored and thick-walled SBA-16-type mesoporous silica under mildly acidic conditions, Journal of Colloid and Interface Science. 307 (2007) 158–165.
[38] J. Wei, J. Shi, H. Pan, Q. Su, J. Zhu, Y. Shi, Thermal and hydrothermal stability of amino-functionalized SBA-16 and promotion of hydrophobicity by silylation, Microporous and Mesoporous Materials. 117 (2009) 596–602.
[39] C. Lin, Synthesis of SBA-16 and SBA-15 mesoporous silica crystals templated with neutral block copolymer surfactants, Journal of Physics and Chemistry of Solids. 69 (2008) 415–419.
[40] S.-Y. Chen, S. Cheng, Acid-Free Synthesis of Mesoporous Silica Using Triblock Copolymer as Template with the Aid of Salt and Alcohol, Chemistry of Materials. 19 (2007) 3041–3051.
[41] P. Van Der Voort, M. Benjelloun, E.F. Vansant, Rationalization of the Synthesis of SBA-16: Controlling the Micro- and Mesoporosity, The Journal of Physical Chemistry B. 106 (2002) 9027–9032.
[42] S.-E. Park, J.-S. Chang, Y.K. Hwang, D.S. Kim, S.H. Jhung, J.S. Hwang, Supramolecular Interactions and Morphology Control in Microwave Synthesis of Nanoporous Materials, Catalysis Surveys from Asia. 8 (2004) 91–110.
[43] Z. Jin, X. Wang, X. Cui, Synthesis and morphological investigation of ordered SBA-15-type mesoporous silica with an amphiphilic triblock copolymer template under various conditions, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 316 (2008) 27–36.
[44] J.R. Matos, L.P. Mercuri, M. Kruk, M. Jaroniec, Toward the Synthesis of Extra-Large-Pore MCM-41 Analogues, Chemistry of Materials. 13 (2001) 1726–1731.
[45] Y. Sakamoto, M. Kaneda, O. Terasaki, D.Y. Zhao, J.M. Kim, G. Stucky, Direct imaging of the pores and cages of three-dimensional mesoporous materials, Nature. 408 (2000) 449–453.
[46] J.S. Lettow, Y.J. Han, P. Schmidt-Winkel, P. Yang, D. Zhao, G.D. Stucky, Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas, Langmuir. 16 (2000) 8291–8295.
[47] P. Schmidt-Winkel, Lukens, P. Yang, D.I. Margolese, J.S. Lettow, J.Y. Ying, Microemulsion Templating of Siliceous Mesostructured Cellular Foams with Well-Defined Ultralarge Mesopores, Chem. Mater. 12 (2000) 686–696.
[48] P. Schmidt-Winkel, Lukens, D. Zhao, P. Yang, B.F. Chmelka, G.D. Stucky, Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows, Journal of the American Chemical Society. 121 (1999) 254–255.
[49] X.-Y. Yang, A. Leonard, A. Lemaire, G. Tian, B.-L. Su, Self-formation phenomenon to hierarchically structured porous materials: design, synthesis, formation mechanism and applications, Chem. Commun. 47 (2011) 2763–2786.
[50] Z.-Y. Yuan, B.-L. Su, Insights into hierarchically meso–macroporous structured materials, J. Mater. Chem. 16 (2005) 663–677.
[51] D.M. D’Alessandro, B. Smit, J.R. Long, Carbon Dioxide Capture: Prospects for New Materials, Angewandte Chemie International Edition. 49 (2010) 6058–6082.
[52] A. Sayari, Y. Belmabkhout, R. Serna-Guerrero, Flue gas treatment via CO2 adsorption, Chemical Engineering Journal. 171 (2011) 760–774.
[53] A.C. Yeh, H. Bai, Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions, Science of The Total Environment. 228 (1999) 121–133.
[54] H. Bai, A.C. Yeh, Removal of CO2 Greenhouse Gas by Ammonia Scrubbing, Ind. Eng. Chem. Res. 36 (1997) 2490–2493.
[55] J.C. Fisher, J. Tanthana, S.S.C. Chuang, Oxide‐supported tetraethylenepentamine for CO2 capture, Environmental Progress & Sustainable Energy. 28 (2009) 589–598.
[56] F. Su, C. Lu, W. Cnen, H. Bai, J.F. Hwang, Capture of CO2 from flue gas via multiwalled carbon nanotubes, Science of The Total Environment. 407 (2009) 3017–3023.
[57] F. Su, C. Lu, S.-C. Kuo, W. Zeng, Adsorption of CO2 on Amine-Functionalized Y-Type Zeolites, Energy & Fuels. 24 (2010) 1441–1448.
[58] P.D. Jadhav, R.V. Chatti, R.B. Biniwale, N.K. Labhsetwar, S. Devotta, S.S. Rayalu, Monoethanol Amine Modified Zeolite 13X for CO2 Adsorption at Different Temperatures, Energy & Fuels. 21 (2007) 3555–3559.
[59] R.V. Siriwardane, M.-S. Shen, E.P. Fisher, J.A. Poston, Adsorption of CO2 on Molecular Sieves and Activated Carbon, Energy & Fuels. 15 (2001) 279–284.
[60] R. Chatti, A.K. Bansiwal, J.A. Thote, V. Kumar, P. Jadhav, S.K. Lokhande, Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies, Microporous and Mesoporous Materials. 121 (2009) 84–89.
[61] M.B. Yue, Y. Chun, Y. Cao, X. Dong, J.H. Zhu, CO2 Capture by As‐Prepared SBA‐15 with an Occluded Organic Template, Advanced Functional Materials. 16 (2006) 1717–1722.
[62] M.B. Yue, L.B. Sun, Y. Cao, Y. Wang, Z.J. Wang, J.H. Zhu, Efficient CO2 Capturer Derived from As-Synthesized MCM-41 Modified with Amine, Chemistry - A European Journal. 14 (2008) 3442–3451.
[63] M.B. Yue, L.B. Sun, Y. Cao, Z.J. Wang, Y. Wang, Q. Yu, Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group, Microporous and Mesoporous Materials. 114 (2008) 74–81.
[64] G. Qi, Y. Wang, L. Estevez, X. Duan, N. Anako, A.-H.A. Park, High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules, Energy Environ. Sci. 4 (2011) 444.
[65] F. Zheng, D.N. Tran, B.J. Busche, G.E. Fryxell, R.S. Addleman, T.S. Zemanian, Ethylenediamine-Modified SBA-15 as Regenerable CO2 Sorbent, Industrial & Engineering Chemistry Research. 44 (2005) 3099–3105.
[66] W.-J. Son, J.-S. Choi, W.-S. Ahn, Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials, Microporous and Mesoporous Materials. 113 (2008) 31–40.
[67] P.J.E. Harlick, A. Sayari, Applications of Pore-Expanded Mesoporous Silicas. 3. Triamine Silane Grafting for Enhanced CO2 Adsorption, Industrial & Engineering Chemistry Research. 45 (2006) 3248–3255.
[68] R. Sanz, G. Calleja, A. Arencibia, E.S. Sanz-Perez, CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15, Applied Surface Science. 256 (2010) 5323–5328.
[69] X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture, Energy Fuels. 16 (2002) 1463–1469.
[70] X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Microporous and Mesoporous Materials. 62 (2003) 29–45.
[71] M. Bhagiyalakshmi, L.J. Yun, R. Anuradha, H.T. Jang, Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: their application to CO2 chemisorption, J Porous Mater. 17 (2009) 475–484.
[72] M. Bhagiyalakshmi, S.D. Park, W.S. Cha, H.T. Jang, Development of TREN dendrimers over mesoporous SBA-15 for CO2 adsorption, Applied Surface Science. 256 (2010) 6660–6666.
[73] J. Wei, J. Shi, H. Pan, W. Zhao, Q. Ye, Y. Shi, Adsorption of carbon dioxide on organically functionalized SBA-16, Microporous and Mesoporous Materials. 116 (2008) 394–399.
[74] H.Y. Huang, R.T. Yang, D. Chinn, C.L. Munson, Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas, Ind. Eng. Chem. Res. 42 (2002) 2427–2433.
[75] C. Chen, S.-T. Yang, W.-S. Ahn, R. Ryoo, Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity, Chemical Communications. (2009) 3627.
[76] X. Yan, L. Zhang, Y. Zhang, K. Qiao, Z. Yan, S. Komarneni, Amine-modified mesocellular silica foams for CO2 capture, Chemical Engineering Journal. 168 (2011) 918–924.
[77] D.M. D’Alessandro, B. Smit, J.R. Long, Carbon Dioxide Capture: Prospects for New Materials, Angewandte Chemie International Edition. 49 (2010) 6058–6082.
[78] H.T. Jang, Y. Park, Y.S. Ko, J.Y. Lee, B. Margandan, Highly siliceous MCM-48 from rice husk ash for CO2 adsorption, International Journal of Greenhouse Gas Control. 3 (2009) 545–549.
[79] R.S. Franchi, P.J.E. Harlick, A. Sayari, Applications of Pore-Expanded Mesoporous Silica. 2. Development of a High-Capacity, Water-Tolerant Adsorbent for CO2, Industrial & Engineering Chemistry Research. 44 (2005) 8007–8013.
[80] X. Yan, L. Zhang, Y. Zhang, G. Yang, Z. Yan, Amine-Modified SBA-15: Effect of Pore Structure on the Performance for CO2 Capture, Ind. Eng. Chem. Res. 50 (2011) 3220–3226.
[81] X. Wang, H. Li, H. Liu, X. Hou, AS-synthesized mesoporous silica MSU-1 modified with tetraethylenepentamine for CO2 adsorption, Microporous and Mesoporous Materials. 142 (2011) 564–569.
[82] D.J.N. Subagyono, Z. Liang, G.P. Knowles, A.L. Chaffee, Amine modified mesocellular siliceous foam (MCF) as a sorbent for CO2, Chemical Engineering Research and Design. 89 (2011) 1647–1657.
[83] G. Qi, L. Fu, B.H. Choi, E.P. Giannelis, Efficient CO2 sorbents based on silica foam with ultra-large mesopores, Energy & Environmental Science. (2012).
[84] X. Xu, C. Song, B.G. Miller, A.W. Scaroni, Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent, Fuel Processing Technology. 86 (2005) 1457–1472.
[85] V. Zelenak, M. Badanicova, D. Halamova, J. Cejka, A. Zukal, N. Murafa, et al., Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture, Chemical Engineering Journal. 144 (2008) 336–342.
[86] W.-J. Son, J.-S. Choi, W.-S. Ahn, Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials, Microporous and Mesoporous Materials. 113 (2008) 31–40.
[87] R. Franchi, P.J.E. Harlick, A. Sayari, A high capacity, water tolerant adsorbent for CO2: diethanolamine supported on pore-expanded MCM-41, in: Nanoporous Materials IV Proceedings of the 4th International Symposium on Nanoporous Materials, Elsevier, 2005: pp. 879–886.
[88] P.J.E. Harlick, A. Sayari, Applications of Pore-Expanded Mesoporous Silicas. 3. Triamine Silane Grafting for Enhanced CO2 Adsorption, Ind. Eng. Chem. Res. 45 (2006) 3248–3255.
[89] V. Zelenak, M. Badanicova, D. Halamova, J. Cejka, A. Zukal, N. Murafa, et al., Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture, Chemical Engineering Journal. 144 (2008) 336–342.
[90] J. Matos, M. Rosales, A. Garcia, C. Nieto-Delgado, J.R. Rangel-Mendez, Hybrid photoactive materials from municipal sewage sludge for the photocatalytic degradation of methylene blue, Green Chem. (2011).
[91] H. Misran, R. Singh, S. Begum, M.A. Yarmo, Processing of mesoporous silica materials (MCM-41) from coal fly ash, Journal of Materials Processing Technology. 186 (2007) 8–13.
[92] Y. Kuwahara, T. Ohmichi, T. Kamegawa, K. Mori, H. Yamashita, A novel conversion process for waste slag: synthesis of a hydrotalcite-like compound and zeolite from blast furnace slag and evaluation of adsorption capacities, J. Mater. Chem. 20 (2010) 5052–5062.
[93] C.-T. Hsiao, P.-L. Chang, C.-W. Chen, H.-H. Huang, A systems view for the high-tech industry development: a case study of large-area TFT-LCD industry in Taiwan, Asian Journal of Technology Innovation. 19 (2011) 117–132.
[94] I. Majchrzak-Kucęba, W. Nowak, Development of Fly Ash-Based Sorbent to Capture CO2 from Flue Gas, in: G. Yue, H. Zhang, C. Zhao, Z. Luo (Eds.), Proceedings of the 20th International Conference on Fluidized Bed Combustion, Springer Berlin Heidelberg, 2010: pp. 596–602.
[95] G. Chandrasekar, W. Son, W. Ahn, Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO2 adsorption, Journal of Porous Materials. 16 (2009) 545–551.
[96] J.-E. Park, H.-K. Youn, S.-T. Yang, W.-S. Ahn, CO2 capture and MWCNTs synthesis using mesoporous silica and zeolite 13X collectively prepared from bottom ash, Catalysis Today. (n.d.).
[97] C. Chen, K.-S. You, J.-W. Ahn, W.-S. Ahn, Synthesis of mesoporous silica from bottom ash and its application for CO2 sorption, Korean Journal of Chemical Engineering. 27 (2010) 1010–1014.
[98] M. Bhagiyalakshmi, L.J. Yun, R. Anuradha, H.T. Jang, Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting, Journal of Hazardous Materials. 175 (2010) 928–938.
[99] H.-L. Chang, C.-M. Chun, I.A. Aksay, W.-H. Shih, Conversion of Fly Ash into Mesoporous Aluminosilicate, Industrial & Engineering Chemistry Research. 38 (1999) 973–977.
[100] M. Saadoun, B. Bessais, N. Mliki, M. Ferid, H. Ezzaouia, R. Bennaceur, Formation of luminescent (NH4)2SiF6 phase from vapour etching-based porous silicon, Applied Surface Science. 210 (2003) 240–248.
[101] C. Lu, H. Bai, B. Wu, F. Su, J.F. Hwang, Comparative Study of CO2 Capture by Carbon Nanotubes, Activated Carbons, and Zeolites, Energ Fuel. 22 (2008) 3050–3056.
[102] H.S. Yu, K.-I. Rhee, C.K. Lee, D.-H. Yang, Two-step ammoniation of by-product fluosilicic acid to produce high quality amorphous silica, Korean J. Chem. Eng. 17 (2000) 401–408.
[103] E.I. Mel’nichenko, G.F. Krysenko, (NH4)2SiF6 evaporation in the presence of SiO2, Russ. J. Inorg. Chem. 51 (2006) 27–31.
[104] T. Cardinal, O. Efimov, H. Francois-Saint-Cyr, L. Glebov, L. Glebova, V. Smirnov, Comparative study of photo-induced variations of X-ray diffraction and refractive index in photo-thermo-refractive glass, Journal of Non-crystalline Solids. 325 (2003) 275–281.
[105] P.B. Sarawade, J.-K. Kim, A. Hilonga, H.T. Kim, Recovery of high surface area mesoporous silica from waste hexafluorosilicic acid (H2SiF6) of fertilizer industry, Journal of Hazardous Materials. 173 (2010) 576–580.
[106] L. Wang, A. Lu, C. Wang, X. Zheng, D. Zhao, R. Liu, Nano-fibriform production of silica from natural chrysotile, J. Colloid Interface Sci. 295 (2006) 436–439.
[107] K. Liu, Q. Feng, Y. Yang, G. Zhang, L. Ou, Y. Lu, Preparation and characterization of amorphous silica nanowires from natural chrysotile, J. Non-Cryst. Solids. 353 (2007) 1534–1539.
[108] H.-L. Chang, C.-M. Chun, I.A. Aksay, W.-H. Shih, Conversion of Fly Ash into Mesoporous Aluminosilicate, Industrial & Engineering Chemistry Research. 38 (1999) 973–977.
[109] L.-Y. Lin, H. Bai, Continuous generation of mesoporous silica particles via the use of sodium metasilicate precursor and their potential for CO2 capture, Microporous and Mesoporous Materials. 136 (2010) 25–32.
[110] C. Hung, H. Bai, M. Karthik, Ordered mesoporous silica particles and Si-MCM-41 for the adsorption of acetone: A comparative study, Sep Purif Technol. 64 (2009) 265–272.
[111] M. Karthik, L.-Y. Lin, H. Bai, Bifunctional mesoporous Cu-Al-MCM-41 materials for the simultaneous catalytic abatement of NOx and VOCs, Microporous Mesoporous Mater. 117 (2009) 153–160.
[112] N. Baccile, D. Grosso, C. Sanchez, Aerosol generated mesoporous silica particles, J. Mater. Chem. 13 (2003) 3011–3016.
[113] M.T. Bore, S.B. Rathod, T.L. Ward, A.K. Datye, Hexagonal Mesostructure in Powders Produced by Evaporation-Induced Self-Assembly of Aerosols from Aqueous Tetraethoxysilane Solutions, Langmuir. 19 (2003) 256–264.
[114] G. Chandrasekar, K.-S. You, J.-W. Ahn, W.-S. Ahn, Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash, Microporous and Mesoporous Materials. 111 (2008) 455–462.
[115] L.-Y. Lin, J.-T. Kuo, H. Bai, Silica materials recovered from photonic industrial waste powder: Its extraction, modification, characterization and application, Journal of Hazardous Materials. 192 (2011) 255–262.
[116] S.-Y. Chen, S. Cheng, Acid-Free Synthesis of Mesoporous Silica Using Triblock Copolymer as Template with the Aid of Salt and Alcohol, Chemistry of Materials. 19 (2007) 3041–3051.
[117] S. Jun, J.M. Kim, R. Ryoo, Y.-S. Ahn, M.-H. Han, Hydrothermal stability of MCM-48 improved by post-synthesis restructuring in salt solution, Microporous and Mesoporous Materials. 41 (2000) 119–127.
[118] L. Wang, Y. Shao, J. Zhang, M. Anpo, Cooperative effect of crystallization temperature and NaF addition in the formation process and hydrothermal stability of MCM-48 mesoporous molecular sieve, Microporous and Mesoporous Materials. 100 (2007) 241–249.
[119] J. Lee, J. Kim, J. Kim, H. Jia, M.I. Kim, J.H. Kwak, et al., Simple Synthesis of Hierarchically Ordered Mesocellular Mesoporous Silica Materials Hosting Crosslinked Enzyme Aggregates, Small. 1 (2005) 744–753.
[120] P. Zhang, Z. Wu, N. Xiao, L. Ren, X. Meng, C. Wang, et al., Ordered Cubic Mesoporous Silicas with Large Pore Sizes Synthesized via High-Temperature Route, Langmuir. 25 (2009) 13169–13175.
[121] M. Choi, W. Heo, F. Kleitz, R. Ryoo, Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness, Chemical Communications. (2003) 1340.
[122] L. Wang, J. Zhang, F. Chen, M. Anpo, Fluoride-Induced Reduction of CTAB Template Amount for the Formation of MCM-48 Mesoporous Molecular Sieve, J. Phys. Chem. C. 111 (2007) 13648–13651.
[123] Y. Hsu, Y. Chang, C. Yang, Swelling‐Agent‐Free Synthesis of Siliceous and Functional Mesocellular Foam‐Like Mesophases by Using a Carboxy‐Terminated Triblock Copolymer, Advanced Functional Materials. 18 (2008) 1799–1808.
[124] S. An, J. Joo, J. Lee, Ultra-low-cost route to mesocellular siliceous foam from steel slag and mesocellular carbon foam as catalyst support in fuel cell, Microporous and Mesoporous Materials.
[125] D. Zhao, Q. Huo, J. Feng, B. Chmelka, G. Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc. 120 (1998) 6036, 6024.
[126] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature. 359 (1992) 710–712.
[127] X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Microporous Mesoporous Mater. 62 (2003) 29–45.
[128] K. Kosuge, T. Sato, N. Kikukawa, M. Takemori, Morphological Control of Rod- and Fiberlike SBA-15 Type Mesoporous Silica Using Water-Soluble Sodium Silicate, Chem. Mater. 16 (2004) 899–905.
[129] X. Pang, F. Tang, Morphological control of mesoporous materials using inexpensive silica sources, Microporous Mesoporous Mater. 85 (2005) 1–6.
[130] C.-T. Hung, H. Bai, Adsorption behaviors of organic vapors using mesoporous silica particles made by evaporation induced self-assembly method, Chem. Eng. Sci. 63 (2008) 1997–2005.
[131] P.T. Tanev, T.J. Pinnavaia, Mesoporous Silica Molecular Sieves Prepared by Ionic and Neutral Surfactant Templating: A Comparison of Physical Properties, Chem. Mater. 8 (1996) 2068–2079.
[132] M.D. Donohue, G.L. Aranovich, Adsorption Hysteresis in Porous Solids, J. Colloid Interface Sci. 205 (1998) 121–130.
[133] P.J. Bruinsma, A.Y. Kim, J. Liu, S. Baskaran, Mesoporous Silica Synthesized by Solvent Evaporation: Spun Fibers and Spray-Dried Hollow Spheres, Chem. Mater. 9 (1997) 2507–2512.
[134] A.-J. Wang, Y.-P. Lu, R.-X. Sun, Recent progress on the fabrication of hollow microspheres, Mater. Sci. Eng., A. 460-461 (2007) 1–6.
[135] R.I. Nooney, D. Thirunavukkarasu, Y. Chen, R. Josephs, A.E. Ostafin, Self-Assembly of Mesoporous Nanoscale Silica/Gold Composites, Langmuir. 19 (2003) 7628–7637.
[136] C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole, C. Sanchez, Aerosol Route to Functional Nanostructured Inorganic and Hybrid Porous Materials, Advanced Materials. 23 (2011) 599–623.
[137] J.H. Bang, K.S. Suslick, Applications of Ultrasound to the Synthesis of Nanostructured Materials, Advanced Materials. 22 (2010) 1039–1059.
[138] S.H. Kim, B.Y.H. Liu, M.R. Zachariah, Ultrahigh Surface Area Nanoporous Silica Particles via an Aero-Sol−Gel Process, Langmuir. 20 (2004) 2523–2526.
[139] T. Kimura, K. Kato, Y. Yamauchi, Temperature-controlled and aerosol-assisted synthesis of aluminium organophosphonate spherical particles with uniform mesopores, Chemical Communications. (2009) 4938.
[140] Y. Lu, H. Fan, A. Stump, T.L. Ward, T. Rieker, C.J. Brinker, Aerosol-assisted self-assembly of mesostructured spherical nanoparticles, Nature. 398 (1999) 223–226.
[141] Y. Lu, H. Fan, N. Doke, D.A. Loy, R.A. Assink, D.A. LaVan, et al., Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality, J. Am. Chem. Soc. 122 (2000) 5258–5261.
[142] C. Urata, Y. Yamauchi, Y. Aoyama, J. Imasu, S. Todoroki, Y. Sakka, et al., Fabrication of Hierarchically Porous Spherical Particles by Assembling Mesoporous Silica Nanoparticles via Spray Drying, Journal of Nanoscience and Nanotechnology. 8 (2008) 3101–3105.
[143] S.H. Kim, B.Y.H. Liu, M.R. Zachariah, Synthesis of Nanoporous Metal Oxide Particles by a New Inorganic Matrix Spray Pyrolysis Method, Chemistry of Materials. 14 (2002) 2889–2899.
[144] C. Jo, K. Kim, R. Ryoo, Syntheses of high quality KIT-6 and SBA-15 mesoporous silicas using low-cost water glass, through rapid quenching of silicate structure in acidic solution, Microporous and Mesoporous Materials. 124 (2009) 45–51.
[145] R. Kiyoura, K. Urano, Mechanism, Kinetics, and Equilibrium of Thermal Decomposition of Ammonium Sulfate, Ind. Eng. Chem. Proc. Des. Dev. 9 (1970) 489–494.
[146] L.-Y. Lin, H. Bai, Continuous generation of mesoporous silica particles via the use of sodium metasilicate precursor and their potential for CO2 capture, Microporous and Mesoporous Materials. 136 (2010) 25–32.
[147] S.H. Kim, B.Y.H. Liu, M.R. Zachariah, Ultrahigh Surface Area Nanoporous Silica Particles via an Aero-Sol−Gel Process, Langmuir. 20 (2004) 2523–2526.
[148] H. Isobe, S. Utsumi, K. Yamamoto, H. Kanoh, K. Kaneko, Micropore to Macropore Structure-Designed Silicas with Regulated Condensation of Silicic Acid Nanoparticles, Langmuir. 21 (2005) 8042–8047.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 史習安、黃靖文(2005)。知識管理與人力資源管理間互動關係之探討:以台灣高科技公司為例。中山管理評論,13(4),925-958。
2. 朱碧靜(2009)。學習歷程檔案在圖書資訊利用教育之應用:通識課程之實作與省思。圖書與資訊學刊,68,66-79。
3. 何仕仁、黃台珠、吳裕益(2009)。科學學習歷程模式之建構及驗證。科學教育學刊,17(1),69-90。
4. 吳美美、王宏仁(2007)。數位時代中小學教師個人知識管理概念構架研究。圖書資訊學研究,2(1) ,,97‐122。
5. 巫銘昌、曾國鴻、劉威德(2006)。高等技職校院學生學習理性思維之效益研究。科學教育學刊,14(4),427-445。
6. 汪美香、楊棠堯、黃國展(2009)。知識分享方式與團隊學習能力對團隊創造力之影響。資訊管理學報,16(1),181-202。
7. 張郁雯(2010)。國小學童資訊素養檔案評量之發展研究。教育心理學報,41(3),521-550。
8. 張基成、林維倩(2009)。數位化學習歷程檔案格式、內容項目與多媒體之分析。教學科技與媒體,90,32-48。
9. 梁定澎、歐陽彥晶、許如欽(2005)。影響台灣企業採用知識管理之因素。資訊管理學報,12(3),1-38。
10. 莊雪華、黃繼仁、劉漢欽、謝宗憲(2010)。應用部落格發展電子歷程檔案系統之研究︰以師資培育的教育實習輔導為例。中正教育研究,9(2),51-87。
11. 陳聰文、林素卿、龔心怡(2008)。國中教師知識管理對學校效能影響之研究。師資培育與教師專業發展期刊,1(1),25-50。
12. 曾國鴻、楊宏仁、陳榮宗、曾建勳(2005)。國小教師實施知識創新的可行策略及其障礙因素之研究。教育學刊,25,51-78。
13. 黃正旭、葛之鈞、楊鎮華、傅先智(2010)。以Blog為基礎之線上知識分享程度:與Blog認知可用性關係之研究。數位學習科技期刊,2(2),22-34。
14. 黃延聰(2006)。代工聯盟中產品開發能力之提昇:知識管理過程觀點。中山管理評論,14(4),881-914。
15. 黃家齊、許雅婷(2006)。團隊成員人格特質對知識分享及創新績效之影響-個人與團隊層次的分析。管理學報,23(2),149-170。