|
[1] J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advances in CO2 capture technology--The U.S. Department of Energy’s Carbon Sequestration Program, International Journal of Greenhouse Gas Control. 2 (2008) 9–20. [2] D. Aaron, C. Tsouris, Separation of CO2 from Flue Gas: A Review, Separation Science and Technology. 40 (2005) 321. [3] M.M. Abu-Khader, Recent Progress in CO2 Capture/Sequestration: A Review, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 28 (2006) 1261. [4] J.C. Chow, R. Berglund, P. Biswas, D. Eatough, P.K. Mueller, J.G. Watson, Separation and capture of CO2 from large stationary sources and sequestration in geological formations, J Air Waste Manag Assoc. 53 (2003) 643–644. [5] S.-W. Hung, J.-M. Tsai, M.-J. Cheng, P.-C. Chen, Analysis of the development strategy of late-entrants in Taiwan and Korea’s TFT-LCD industry, Technology in Society. 34 (2012) 9–22. [6] K.S. Hui, C.Y.H. Chao, Synthesis of MCM-41 from coal fly ash by a green approach: Influence of synthesis pH, Journal of Hazardous Materials. 137 (2006) 1135–1148. [7] M. Bhagiyalakshmi, L.J. Yun, R. Anuradha, H.T. Jang, Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting, Journal of Hazardous Materials. 175 (2010) 928–938. [8] C.L. Choi, M. Park, D.H. Lee, J.-E. Kim, B.-Y. Park, J. Choi, Salt-Thermal Zeolitization of Fly Ash, Environmental Science & Technology. 35 (2001) 2812–2816. [9] M. Bhagiyalakshmi, J.Y. Lee, H.T. Jang, Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption, International Journal of Greenhouse Gas Control. 4 (2010) 51–56. [10] D. Trong On, D. Desplantier-Giscard, C. Danumah, S. Kaliaguine, Perspectives in catalytic applications of mesostructured materials, Applied Catalysis A: General. 253 (2003) 545–602. [11] A. Taguchi, F. Schuth, Ordered mesoporous materials in catalysis, Microporous and Mesoporous Materials. 77 (2005) 1–45. [12] A. Sayari, Catalysis by Crystalline Mesoporous Molecular Sieves, Chemistry of Materials. 8 (1996) 1840–1852. [13] X.S. Zhao, G.Q. (Max) Lu, G.J. Millar, Advances in Mesoporous Molecular Sieve MCM-41, Industrial & Engineering Chemistry Research. 35 (1996) 2075–2090. [14] M. Vallet-Regi, A. Ramila, R.P. del Real, J. Perez-Pariente, A New Property of MCM-41: Drug Delivery System, Chemistry of Materials. 13 (2001) 308–311. [15] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science. 279 (1998) 548–552. [16] J.-S. Lee, J.-H. Kim, J.-T. Kim, J.-K. Suh, J.-M. Lee, C.-H. Lee, Adsorption Equilibria of CO2 on Zeolite 13X and Zeolite X/Activated Carbon Composite, Journal of Chemical & Engineering Data. 47 (2002) 1237–1242. [17] D.M. Ruthven, B.K. Kaul, Adsorption of aromatic hydrocarbons in NaX zeolite. 2. Kinetics, Industrial & Engineering Chemistry Research. 32 (1993) 2053–2057. [18] P.J.E. Harlick, F.H. Tezel, Adsorption of carbon dioxide, methane, and nitrogen: pure and binary mixture adsorption by ZSM-5 with SiO2/Al2O3 ratio of 30, Separation Science and Technology. 37 (2002) 33. [19] M.P. Mokhonoana, N.J. Coville, Synthesis of [Si]-MCM-41 from TEOS and water glass: the water glass-enhanced condensation of TEOS under alkaline conditions, J Sol-Gel Sci Technol. 54 (2010) 83–92. [20] L. Wang, Y. Shao, J. Zhang, M. Anpo, Improvement of the hydrothermal stability of MCM-48 mesoporous molecular sieves, Res Chem Intermed. 34 (2008) 267–286. [21] E.M. Johansson, M.A. Ballem, J.M. Cordoba, M. Oden, Rapid Synthesis of SBA-15 Rods with Variable Lengths, Widths, and Tunable Large Pores, Langmuir. 27 (2011) 4994–4999. [22] T.-W. Kim, R. Ryoo, K.P. Gierszal, M. Jaroniec, L.A. Solovyov, Y. Sakamoto, Characterization of mesoporous carbons synthesized with SBA-16 silica template, J. Mater. Chem. 15 (2005) 1560. [23] C. Chen, W.-J. Son, K.-S. You, J.-W. Ahn, W.-S. Ahn, Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity, Chemical Engineering Journal. 161 (2010) 46–52. [24] Y. Liu, T.J. Pinnavaia, Assembly of Hydrothermally Stable Aluminosilicate Foams and Large-Pore Hexagonal Mesostructures from Zeolite Seeds under Strongly Acidic Conditions, Chemistry of Materials. 14 (2002) 3–5. [25] W.W. Lukens, P. Yang, G.D. Stucky, Synthesis of Mesocellular Silica Foams with Tunable Window and Cell Dimensions, Chem. Mater. 13 (2001) 28–34. [26] C. Yu, B. Tian, J. Fan, G.D. Stucky, D. Zhao, Synthesis of Siliceous Hollow Spheres with Ultra Large Mesopore Wall Structures by Reverse Emulsion Templating, Chemistry Letters. 31 (2002) 62–63. [27] Y. Liu, J. Shi, J. Chen, Q. Ye, H. Pan, Z. Shao, Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6, Microporous and Mesoporous Materials. 134 (2010) 16–21. [28] Y. Liu, Q. Ye, M. Shen, J. Shi, J. Chen, H. Pan, Carbon Dioxide Capture by Functionalized Solid Amine Sorbents with Simulated Flue Gas Conditions, Environ. Sci. Technol. 45 (2011) 5710–5716. [29] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature. 359 (1992) 710–712. [30] C.-T. Hung, H. Bai, Adsorption behaviors of organic vapors using mesoporous silica particles made by evaporation induced self-assembly method, Chemical Engineering Science. 63 (2008) 1997–2005. [31] M. Karthik, L.-Y. Lin, H. Bai, Bifunctional mesoporous Cu–Al–MCM-41 materials for the simultaneous catalytic abatement of NOx and VOCs, Microporous and Mesoporous Materials. 117 (2009) 153–160. [32] C. Hung, H. Bai, M. Karthik, Ordered mesoporous silica particles and Si-MCM-41 for the adsorption of acetone: A comparative study, Separation and Purification Technology. 64 (2009) 265–272. [33] M. Kruk, M. Jaroniec, A. Sayari, A Unified Interpretation of High-Temperature Pore Size Expansion Processes in MCM-41 Mesoporous Silicas, The Journal of Physical Chemistry B. 103 (1999) 4590–4598. [34] A. Sayari, M. Kruk, M. Jaroniec, I.L. Moudrakovski, New Approaches to Pore Size Engineering of Mesoporous Silicates, Adv. Mater. 10 (1998) 1376–1379. [35] V. Meynen, P. Cool, E.F. Vansant, Verified syntheses of mesoporous materials, Microporous and Mesoporous Materials. 125 (2009) 170–223. [36] H. Jin, Q. Wu, C. Chen, D. Zhang, W. Pang, Facile synthesis of crystal like shape mesoporous silica SBA-16, Microporous and Mesoporous Materials. 97 (2006) 141–144. [37] Z. Jin, X. Wang, X. Cui, A two-step route to synthesis of small-pored and thick-walled SBA-16-type mesoporous silica under mildly acidic conditions, Journal of Colloid and Interface Science. 307 (2007) 158–165. [38] J. Wei, J. Shi, H. Pan, Q. Su, J. Zhu, Y. Shi, Thermal and hydrothermal stability of amino-functionalized SBA-16 and promotion of hydrophobicity by silylation, Microporous and Mesoporous Materials. 117 (2009) 596–602. [39] C. Lin, Synthesis of SBA-16 and SBA-15 mesoporous silica crystals templated with neutral block copolymer surfactants, Journal of Physics and Chemistry of Solids. 69 (2008) 415–419. [40] S.-Y. Chen, S. Cheng, Acid-Free Synthesis of Mesoporous Silica Using Triblock Copolymer as Template with the Aid of Salt and Alcohol, Chemistry of Materials. 19 (2007) 3041–3051. [41] P. Van Der Voort, M. Benjelloun, E.F. Vansant, Rationalization of the Synthesis of SBA-16: Controlling the Micro- and Mesoporosity, The Journal of Physical Chemistry B. 106 (2002) 9027–9032. [42] S.-E. Park, J.-S. Chang, Y.K. Hwang, D.S. Kim, S.H. Jhung, J.S. Hwang, Supramolecular Interactions and Morphology Control in Microwave Synthesis of Nanoporous Materials, Catalysis Surveys from Asia. 8 (2004) 91–110. [43] Z. Jin, X. Wang, X. Cui, Synthesis and morphological investigation of ordered SBA-15-type mesoporous silica with an amphiphilic triblock copolymer template under various conditions, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 316 (2008) 27–36. [44] J.R. Matos, L.P. Mercuri, M. Kruk, M. Jaroniec, Toward the Synthesis of Extra-Large-Pore MCM-41 Analogues, Chemistry of Materials. 13 (2001) 1726–1731. [45] Y. Sakamoto, M. Kaneda, O. Terasaki, D.Y. Zhao, J.M. Kim, G. Stucky, Direct imaging of the pores and cages of three-dimensional mesoporous materials, Nature. 408 (2000) 449–453. [46] J.S. Lettow, Y.J. Han, P. Schmidt-Winkel, P. Yang, D. Zhao, G.D. Stucky, Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas, Langmuir. 16 (2000) 8291–8295. [47] P. Schmidt-Winkel, Lukens, P. Yang, D.I. Margolese, J.S. Lettow, J.Y. Ying, Microemulsion Templating of Siliceous Mesostructured Cellular Foams with Well-Defined Ultralarge Mesopores, Chem. Mater. 12 (2000) 686–696. [48] P. Schmidt-Winkel, Lukens, D. Zhao, P. Yang, B.F. Chmelka, G.D. Stucky, Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows, Journal of the American Chemical Society. 121 (1999) 254–255. [49] X.-Y. Yang, A. Leonard, A. Lemaire, G. Tian, B.-L. Su, Self-formation phenomenon to hierarchically structured porous materials: design, synthesis, formation mechanism and applications, Chem. Commun. 47 (2011) 2763–2786. [50] Z.-Y. Yuan, B.-L. Su, Insights into hierarchically meso–macroporous structured materials, J. Mater. Chem. 16 (2005) 663–677. [51] D.M. D’Alessandro, B. Smit, J.R. Long, Carbon Dioxide Capture: Prospects for New Materials, Angewandte Chemie International Edition. 49 (2010) 6058–6082. [52] A. Sayari, Y. Belmabkhout, R. Serna-Guerrero, Flue gas treatment via CO2 adsorption, Chemical Engineering Journal. 171 (2011) 760–774. [53] A.C. Yeh, H. Bai, Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions, Science of The Total Environment. 228 (1999) 121–133. [54] H. Bai, A.C. Yeh, Removal of CO2 Greenhouse Gas by Ammonia Scrubbing, Ind. Eng. Chem. Res. 36 (1997) 2490–2493. [55] J.C. Fisher, J. Tanthana, S.S.C. Chuang, Oxide‐supported tetraethylenepentamine for CO2 capture, Environmental Progress & Sustainable Energy. 28 (2009) 589–598. [56] F. Su, C. Lu, W. Cnen, H. Bai, J.F. Hwang, Capture of CO2 from flue gas via multiwalled carbon nanotubes, Science of The Total Environment. 407 (2009) 3017–3023. [57] F. Su, C. Lu, S.-C. Kuo, W. Zeng, Adsorption of CO2 on Amine-Functionalized Y-Type Zeolites, Energy & Fuels. 24 (2010) 1441–1448. [58] P.D. Jadhav, R.V. Chatti, R.B. Biniwale, N.K. Labhsetwar, S. Devotta, S.S. Rayalu, Monoethanol Amine Modified Zeolite 13X for CO2 Adsorption at Different Temperatures, Energy & Fuels. 21 (2007) 3555–3559. [59] R.V. Siriwardane, M.-S. Shen, E.P. Fisher, J.A. Poston, Adsorption of CO2 on Molecular Sieves and Activated Carbon, Energy & Fuels. 15 (2001) 279–284. [60] R. Chatti, A.K. Bansiwal, J.A. Thote, V. Kumar, P. Jadhav, S.K. Lokhande, Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies, Microporous and Mesoporous Materials. 121 (2009) 84–89. [61] M.B. Yue, Y. Chun, Y. Cao, X. Dong, J.H. Zhu, CO2 Capture by As‐Prepared SBA‐15 with an Occluded Organic Template, Advanced Functional Materials. 16 (2006) 1717–1722. [62] M.B. Yue, L.B. Sun, Y. Cao, Y. Wang, Z.J. Wang, J.H. Zhu, Efficient CO2 Capturer Derived from As-Synthesized MCM-41 Modified with Amine, Chemistry - A European Journal. 14 (2008) 3442–3451. [63] M.B. Yue, L.B. Sun, Y. Cao, Z.J. Wang, Y. Wang, Q. Yu, Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group, Microporous and Mesoporous Materials. 114 (2008) 74–81. [64] G. Qi, Y. Wang, L. Estevez, X. Duan, N. Anako, A.-H.A. Park, High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules, Energy Environ. Sci. 4 (2011) 444. [65] F. Zheng, D.N. Tran, B.J. Busche, G.E. Fryxell, R.S. Addleman, T.S. Zemanian, Ethylenediamine-Modified SBA-15 as Regenerable CO2 Sorbent, Industrial & Engineering Chemistry Research. 44 (2005) 3099–3105. [66] W.-J. Son, J.-S. Choi, W.-S. Ahn, Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials, Microporous and Mesoporous Materials. 113 (2008) 31–40. [67] P.J.E. Harlick, A. Sayari, Applications of Pore-Expanded Mesoporous Silicas. 3. Triamine Silane Grafting for Enhanced CO2 Adsorption, Industrial & Engineering Chemistry Research. 45 (2006) 3248–3255. [68] R. Sanz, G. Calleja, A. Arencibia, E.S. Sanz-Perez, CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15, Applied Surface Science. 256 (2010) 5323–5328. [69] X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture, Energy Fuels. 16 (2002) 1463–1469. [70] X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Microporous and Mesoporous Materials. 62 (2003) 29–45. [71] M. Bhagiyalakshmi, L.J. Yun, R. Anuradha, H.T. Jang, Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: their application to CO2 chemisorption, J Porous Mater. 17 (2009) 475–484. [72] M. Bhagiyalakshmi, S.D. Park, W.S. Cha, H.T. Jang, Development of TREN dendrimers over mesoporous SBA-15 for CO2 adsorption, Applied Surface Science. 256 (2010) 6660–6666. [73] J. Wei, J. Shi, H. Pan, W. Zhao, Q. Ye, Y. Shi, Adsorption of carbon dioxide on organically functionalized SBA-16, Microporous and Mesoporous Materials. 116 (2008) 394–399. [74] H.Y. Huang, R.T. Yang, D. Chinn, C.L. Munson, Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas, Ind. Eng. Chem. Res. 42 (2002) 2427–2433. [75] C. Chen, S.-T. Yang, W.-S. Ahn, R. Ryoo, Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity, Chemical Communications. (2009) 3627. [76] X. Yan, L. Zhang, Y. Zhang, K. Qiao, Z. Yan, S. Komarneni, Amine-modified mesocellular silica foams for CO2 capture, Chemical Engineering Journal. 168 (2011) 918–924. [77] D.M. D’Alessandro, B. Smit, J.R. Long, Carbon Dioxide Capture: Prospects for New Materials, Angewandte Chemie International Edition. 49 (2010) 6058–6082. [78] H.T. Jang, Y. Park, Y.S. Ko, J.Y. Lee, B. Margandan, Highly siliceous MCM-48 from rice husk ash for CO2 adsorption, International Journal of Greenhouse Gas Control. 3 (2009) 545–549. [79] R.S. Franchi, P.J.E. Harlick, A. Sayari, Applications of Pore-Expanded Mesoporous Silica. 2. Development of a High-Capacity, Water-Tolerant Adsorbent for CO2, Industrial & Engineering Chemistry Research. 44 (2005) 8007–8013. [80] X. Yan, L. Zhang, Y. Zhang, G. Yang, Z. Yan, Amine-Modified SBA-15: Effect of Pore Structure on the Performance for CO2 Capture, Ind. Eng. Chem. Res. 50 (2011) 3220–3226. [81] X. Wang, H. Li, H. Liu, X. Hou, AS-synthesized mesoporous silica MSU-1 modified with tetraethylenepentamine for CO2 adsorption, Microporous and Mesoporous Materials. 142 (2011) 564–569. [82] D.J.N. Subagyono, Z. Liang, G.P. Knowles, A.L. Chaffee, Amine modified mesocellular siliceous foam (MCF) as a sorbent for CO2, Chemical Engineering Research and Design. 89 (2011) 1647–1657. [83] G. Qi, L. Fu, B.H. Choi, E.P. Giannelis, Efficient CO2 sorbents based on silica foam with ultra-large mesopores, Energy & Environmental Science. (2012). [84] X. Xu, C. Song, B.G. Miller, A.W. Scaroni, Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent, Fuel Processing Technology. 86 (2005) 1457–1472. [85] V. Zelenak, M. Badanicova, D. Halamova, J. Cejka, A. Zukal, N. Murafa, et al., Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture, Chemical Engineering Journal. 144 (2008) 336–342. [86] W.-J. Son, J.-S. Choi, W.-S. Ahn, Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials, Microporous and Mesoporous Materials. 113 (2008) 31–40. [87] R. Franchi, P.J.E. Harlick, A. Sayari, A high capacity, water tolerant adsorbent for CO2: diethanolamine supported on pore-expanded MCM-41, in: Nanoporous Materials IV Proceedings of the 4th International Symposium on Nanoporous Materials, Elsevier, 2005: pp. 879–886. [88] P.J.E. Harlick, A. Sayari, Applications of Pore-Expanded Mesoporous Silicas. 3. Triamine Silane Grafting for Enhanced CO2 Adsorption, Ind. Eng. Chem. Res. 45 (2006) 3248–3255. [89] V. Zelenak, M. Badanicova, D. Halamova, J. Cejka, A. Zukal, N. Murafa, et al., Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture, Chemical Engineering Journal. 144 (2008) 336–342. [90] J. Matos, M. Rosales, A. Garcia, C. Nieto-Delgado, J.R. Rangel-Mendez, Hybrid photoactive materials from municipal sewage sludge for the photocatalytic degradation of methylene blue, Green Chem. (2011). [91] H. Misran, R. Singh, S. Begum, M.A. Yarmo, Processing of mesoporous silica materials (MCM-41) from coal fly ash, Journal of Materials Processing Technology. 186 (2007) 8–13. [92] Y. Kuwahara, T. Ohmichi, T. Kamegawa, K. Mori, H. Yamashita, A novel conversion process for waste slag: synthesis of a hydrotalcite-like compound and zeolite from blast furnace slag and evaluation of adsorption capacities, J. Mater. Chem. 20 (2010) 5052–5062. [93] C.-T. Hsiao, P.-L. Chang, C.-W. Chen, H.-H. Huang, A systems view for the high-tech industry development: a case study of large-area TFT-LCD industry in Taiwan, Asian Journal of Technology Innovation. 19 (2011) 117–132. [94] I. Majchrzak-Kucęba, W. Nowak, Development of Fly Ash-Based Sorbent to Capture CO2 from Flue Gas, in: G. Yue, H. Zhang, C. Zhao, Z. Luo (Eds.), Proceedings of the 20th International Conference on Fluidized Bed Combustion, Springer Berlin Heidelberg, 2010: pp. 596–602. [95] G. Chandrasekar, W. Son, W. Ahn, Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO2 adsorption, Journal of Porous Materials. 16 (2009) 545–551. [96] J.-E. Park, H.-K. Youn, S.-T. Yang, W.-S. Ahn, CO2 capture and MWCNTs synthesis using mesoporous silica and zeolite 13X collectively prepared from bottom ash, Catalysis Today. (n.d.). [97] C. Chen, K.-S. You, J.-W. Ahn, W.-S. Ahn, Synthesis of mesoporous silica from bottom ash and its application for CO2 sorption, Korean Journal of Chemical Engineering. 27 (2010) 1010–1014. [98] M. Bhagiyalakshmi, L.J. Yun, R. Anuradha, H.T. Jang, Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting, Journal of Hazardous Materials. 175 (2010) 928–938. [99] H.-L. Chang, C.-M. Chun, I.A. Aksay, W.-H. Shih, Conversion of Fly Ash into Mesoporous Aluminosilicate, Industrial & Engineering Chemistry Research. 38 (1999) 973–977. [100] M. Saadoun, B. Bessais, N. Mliki, M. Ferid, H. Ezzaouia, R. Bennaceur, Formation of luminescent (NH4)2SiF6 phase from vapour etching-based porous silicon, Applied Surface Science. 210 (2003) 240–248. [101] C. Lu, H. Bai, B. Wu, F. Su, J.F. Hwang, Comparative Study of CO2 Capture by Carbon Nanotubes, Activated Carbons, and Zeolites, Energ Fuel. 22 (2008) 3050–3056. [102] H.S. Yu, K.-I. Rhee, C.K. Lee, D.-H. Yang, Two-step ammoniation of by-product fluosilicic acid to produce high quality amorphous silica, Korean J. Chem. Eng. 17 (2000) 401–408. [103] E.I. Mel’nichenko, G.F. Krysenko, (NH4)2SiF6 evaporation in the presence of SiO2, Russ. J. Inorg. Chem. 51 (2006) 27–31. [104] T. Cardinal, O. Efimov, H. Francois-Saint-Cyr, L. Glebov, L. Glebova, V. Smirnov, Comparative study of photo-induced variations of X-ray diffraction and refractive index in photo-thermo-refractive glass, Journal of Non-crystalline Solids. 325 (2003) 275–281. [105] P.B. Sarawade, J.-K. Kim, A. Hilonga, H.T. Kim, Recovery of high surface area mesoporous silica from waste hexafluorosilicic acid (H2SiF6) of fertilizer industry, Journal of Hazardous Materials. 173 (2010) 576–580. [106] L. Wang, A. Lu, C. Wang, X. Zheng, D. Zhao, R. Liu, Nano-fibriform production of silica from natural chrysotile, J. Colloid Interface Sci. 295 (2006) 436–439. [107] K. Liu, Q. Feng, Y. Yang, G. Zhang, L. Ou, Y. Lu, Preparation and characterization of amorphous silica nanowires from natural chrysotile, J. Non-Cryst. Solids. 353 (2007) 1534–1539. [108] H.-L. Chang, C.-M. Chun, I.A. Aksay, W.-H. Shih, Conversion of Fly Ash into Mesoporous Aluminosilicate, Industrial & Engineering Chemistry Research. 38 (1999) 973–977. [109] L.-Y. Lin, H. Bai, Continuous generation of mesoporous silica particles via the use of sodium metasilicate precursor and their potential for CO2 capture, Microporous and Mesoporous Materials. 136 (2010) 25–32. [110] C. Hung, H. Bai, M. Karthik, Ordered mesoporous silica particles and Si-MCM-41 for the adsorption of acetone: A comparative study, Sep Purif Technol. 64 (2009) 265–272. [111] M. Karthik, L.-Y. Lin, H. Bai, Bifunctional mesoporous Cu-Al-MCM-41 materials for the simultaneous catalytic abatement of NOx and VOCs, Microporous Mesoporous Mater. 117 (2009) 153–160. [112] N. Baccile, D. Grosso, C. Sanchez, Aerosol generated mesoporous silica particles, J. Mater. Chem. 13 (2003) 3011–3016. [113] M.T. Bore, S.B. Rathod, T.L. Ward, A.K. Datye, Hexagonal Mesostructure in Powders Produced by Evaporation-Induced Self-Assembly of Aerosols from Aqueous Tetraethoxysilane Solutions, Langmuir. 19 (2003) 256–264. [114] G. Chandrasekar, K.-S. You, J.-W. Ahn, W.-S. Ahn, Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash, Microporous and Mesoporous Materials. 111 (2008) 455–462. [115] L.-Y. Lin, J.-T. Kuo, H. Bai, Silica materials recovered from photonic industrial waste powder: Its extraction, modification, characterization and application, Journal of Hazardous Materials. 192 (2011) 255–262. [116] S.-Y. Chen, S. Cheng, Acid-Free Synthesis of Mesoporous Silica Using Triblock Copolymer as Template with the Aid of Salt and Alcohol, Chemistry of Materials. 19 (2007) 3041–3051. [117] S. Jun, J.M. Kim, R. Ryoo, Y.-S. Ahn, M.-H. Han, Hydrothermal stability of MCM-48 improved by post-synthesis restructuring in salt solution, Microporous and Mesoporous Materials. 41 (2000) 119–127. [118] L. Wang, Y. Shao, J. Zhang, M. Anpo, Cooperative effect of crystallization temperature and NaF addition in the formation process and hydrothermal stability of MCM-48 mesoporous molecular sieve, Microporous and Mesoporous Materials. 100 (2007) 241–249. [119] J. Lee, J. Kim, J. Kim, H. Jia, M.I. Kim, J.H. Kwak, et al., Simple Synthesis of Hierarchically Ordered Mesocellular Mesoporous Silica Materials Hosting Crosslinked Enzyme Aggregates, Small. 1 (2005) 744–753. [120] P. Zhang, Z. Wu, N. Xiao, L. Ren, X. Meng, C. Wang, et al., Ordered Cubic Mesoporous Silicas with Large Pore Sizes Synthesized via High-Temperature Route, Langmuir. 25 (2009) 13169–13175. [121] M. Choi, W. Heo, F. Kleitz, R. Ryoo, Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness, Chemical Communications. (2003) 1340. [122] L. Wang, J. Zhang, F. Chen, M. Anpo, Fluoride-Induced Reduction of CTAB Template Amount for the Formation of MCM-48 Mesoporous Molecular Sieve, J. Phys. Chem. C. 111 (2007) 13648–13651. [123] Y. Hsu, Y. Chang, C. Yang, Swelling‐Agent‐Free Synthesis of Siliceous and Functional Mesocellular Foam‐Like Mesophases by Using a Carboxy‐Terminated Triblock Copolymer, Advanced Functional Materials. 18 (2008) 1799–1808. [124] S. An, J. Joo, J. Lee, Ultra-low-cost route to mesocellular siliceous foam from steel slag and mesocellular carbon foam as catalyst support in fuel cell, Microporous and Mesoporous Materials. [125] D. Zhao, Q. Huo, J. Feng, B. Chmelka, G. Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc. 120 (1998) 6036, 6024. [126] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature. 359 (1992) 710–712. [127] X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Microporous Mesoporous Mater. 62 (2003) 29–45. [128] K. Kosuge, T. Sato, N. Kikukawa, M. Takemori, Morphological Control of Rod- and Fiberlike SBA-15 Type Mesoporous Silica Using Water-Soluble Sodium Silicate, Chem. Mater. 16 (2004) 899–905. [129] X. Pang, F. Tang, Morphological control of mesoporous materials using inexpensive silica sources, Microporous Mesoporous Mater. 85 (2005) 1–6. [130] C.-T. Hung, H. Bai, Adsorption behaviors of organic vapors using mesoporous silica particles made by evaporation induced self-assembly method, Chem. Eng. Sci. 63 (2008) 1997–2005. [131] P.T. Tanev, T.J. Pinnavaia, Mesoporous Silica Molecular Sieves Prepared by Ionic and Neutral Surfactant Templating: A Comparison of Physical Properties, Chem. Mater. 8 (1996) 2068–2079. [132] M.D. Donohue, G.L. Aranovich, Adsorption Hysteresis in Porous Solids, J. Colloid Interface Sci. 205 (1998) 121–130. [133] P.J. Bruinsma, A.Y. Kim, J. Liu, S. Baskaran, Mesoporous Silica Synthesized by Solvent Evaporation: Spun Fibers and Spray-Dried Hollow Spheres, Chem. Mater. 9 (1997) 2507–2512. [134] A.-J. Wang, Y.-P. Lu, R.-X. Sun, Recent progress on the fabrication of hollow microspheres, Mater. Sci. Eng., A. 460-461 (2007) 1–6. [135] R.I. Nooney, D. Thirunavukkarasu, Y. Chen, R. Josephs, A.E. Ostafin, Self-Assembly of Mesoporous Nanoscale Silica/Gold Composites, Langmuir. 19 (2003) 7628–7637. [136] C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole, C. Sanchez, Aerosol Route to Functional Nanostructured Inorganic and Hybrid Porous Materials, Advanced Materials. 23 (2011) 599–623. [137] J.H. Bang, K.S. Suslick, Applications of Ultrasound to the Synthesis of Nanostructured Materials, Advanced Materials. 22 (2010) 1039–1059. [138] S.H. Kim, B.Y.H. Liu, M.R. Zachariah, Ultrahigh Surface Area Nanoporous Silica Particles via an Aero-Sol−Gel Process, Langmuir. 20 (2004) 2523–2526. [139] T. Kimura, K. Kato, Y. Yamauchi, Temperature-controlled and aerosol-assisted synthesis of aluminium organophosphonate spherical particles with uniform mesopores, Chemical Communications. (2009) 4938. [140] Y. Lu, H. Fan, A. Stump, T.L. Ward, T. Rieker, C.J. Brinker, Aerosol-assisted self-assembly of mesostructured spherical nanoparticles, Nature. 398 (1999) 223–226. [141] Y. Lu, H. Fan, N. Doke, D.A. Loy, R.A. Assink, D.A. LaVan, et al., Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality, J. Am. Chem. Soc. 122 (2000) 5258–5261. [142] C. Urata, Y. Yamauchi, Y. Aoyama, J. Imasu, S. Todoroki, Y. Sakka, et al., Fabrication of Hierarchically Porous Spherical Particles by Assembling Mesoporous Silica Nanoparticles via Spray Drying, Journal of Nanoscience and Nanotechnology. 8 (2008) 3101–3105. [143] S.H. Kim, B.Y.H. Liu, M.R. Zachariah, Synthesis of Nanoporous Metal Oxide Particles by a New Inorganic Matrix Spray Pyrolysis Method, Chemistry of Materials. 14 (2002) 2889–2899. [144] C. Jo, K. Kim, R. Ryoo, Syntheses of high quality KIT-6 and SBA-15 mesoporous silicas using low-cost water glass, through rapid quenching of silicate structure in acidic solution, Microporous and Mesoporous Materials. 124 (2009) 45–51. [145] R. Kiyoura, K. Urano, Mechanism, Kinetics, and Equilibrium of Thermal Decomposition of Ammonium Sulfate, Ind. Eng. Chem. Proc. Des. Dev. 9 (1970) 489–494. [146] L.-Y. Lin, H. Bai, Continuous generation of mesoporous silica particles via the use of sodium metasilicate precursor and their potential for CO2 capture, Microporous and Mesoporous Materials. 136 (2010) 25–32. [147] S.H. Kim, B.Y.H. Liu, M.R. Zachariah, Ultrahigh Surface Area Nanoporous Silica Particles via an Aero-Sol−Gel Process, Langmuir. 20 (2004) 2523–2526. [148] H. Isobe, S. Utsumi, K. Yamamoto, H. Kanoh, K. Kaneko, Micropore to Macropore Structure-Designed Silicas with Regulated Condensation of Silicic Acid Nanoparticles, Langmuir. 21 (2005) 8042–8047.
|