跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 10:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林煒傑
研究生(外文):Lin, Wei-Chieh
論文名稱:以電泳沉積法製備光電半導體電極及其應用於水中染料降解之研究
論文名稱(外文):Fabrication of photoelectric semiconductor electrode via electrophoretic deposition and its application in dye wastewater treatment
指導教授:黃志彬黃志彬引用關係
指導教授(外文):Huang, Chih-Pin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:電泳沉積二氧化鈦不鏽鋼鐵網光電催化光電芬頓
外文關鍵詞:electrophoretic depositiontitanium dioxidestainless steel meshphotoelectrocatalysisphotoelectrofenton
相關次數:
  • 被引用被引用:1
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
常見用於針對染整廢水處理之高級氧化技術主要為芬頓反應、光催化反應以及光芬頓反應,然而這些反應機制於實務應用上仍有極大之限制主要因其電子轉換效率不佳而導致在操作成本上偏高,因此近年來已有許多研究以電場輔助形式協助提升其電子利用效率,常見的方法有電芬頓反應、光電催化反應以及光電芬頓反應,其中又以光電催化反應以及光電芬頓反應在污染物去除之效能上有極佳之表現。
本研究主要以電泳沉積方式製備二氧化鈦複合不鏽鋼鐵網基材,作為光電半導體電極,於製備過程中改變不同操作參數例如外部電場之電壓、沉積時間、二氧化鈦懸浮液溫度以及其離子強度等,觀察二氧化鈦之沉積行為以及其鍍層結構特性,得出結論以濃度0.64 g/L 之低溫(4℃)二氧化鈦懸浮液,在經過一高電壓(180 V)短沉積時間(1 min)之電泳沉積程序後經過350℃鍛燒60分鐘後所得之二氧化鈦複合不鏽鋼網之光電半導體電極,其二氧化鈦鍍層能有效減少裂隙現象之產生,經過循環伏安法之電化學特性分析有較穩定之電子傳遞特性。
此外,本研究將以此二氧化鈦複合不鏽鋼鐵網電極應用於光電半導體電極系統針對染料 Orange G (OG) 進行降解,以改變不同工作參數像是系統 pH值,陰極材料以及通入氣體種類進行系統最佳化之調控,並以不同能量供應形式評估系統中對應機制種類與效能如電芬頓、光催化、光電催化等氧化途徑,其中陰極材料部分選用鉑金以及石墨兩種材料針對其電化學特性分析其對於氧氣還原產生過氧化氫之效率做出評估,並在最後以改變電壓控制方式,將系統中陰極石墨電極控制於-1.0 V (vs. SCE),此時亞鐵離子因電場強度關係將從不鏽鋼網基材表面析出,並經由擴散作用穿過二氧化鈦鍍層進入反應水溶液中,系統中之氧化途徑將由光電催化反應與光電芬頓反應結合成一複合性反應機制,有效提升系統電子利用效率而達成高效淨水之目的。

The traditional advanced oxidation processes such as Fenton reaction, photocatalysis reaction and photo Fenton reaction were all limited by its low electron efficiency in dye wastewater treatment. Recent studies have tried to enhance the electron efficiency with electrochemical methods, including electro Fenton reaction, photoelectrocatalysis reaction and photoelectro Fenton reaction.
In this study, titanium dioxide coatings on stainless steel mesh regarded as photoelectric semiconductor electrode have been prepared for dye waste water treatment by electrophoretic deposition (EPD) method. Zn(NO3)2 was added as electrolyte in the suspension comprised of 0.64 g titanium dioxide particles and 200 mL 2-propanol in order to increase the positive charge on the surface of titanium dioxide particles. While the electrolyte concentration is 10-4 M and suspension temperature at 4℃, the surface of stainless steel mesh is completely covered with a homogeneous titanium dioxide layer via cathodic electrophoretic deposition which applied a high voltage electric field in the short period of deposition time. After heat treatment with 350℃for 60 min, a crack-free titanium dioxide layer is produced, and its thickness is about 2.14 μm.
The azo dye Orange G degradation reaction was studied in an undivided cell with carbon felt as the cathode and oxygen gas was purged in the solution for the hydrogen peroxide electrogeneration. Titanium dioxide coatings on stainless steel mesh electrode worked as the photoanode for the photoelectro-assisted reaction under ultraviolet light irradiation. In this photoelectro-assisted oxidation reaction system, hydrogen peroxide is produced by a two-electron transfer reduction of oxygen and the ferrous ion is supplied with electrogeneration from titanium dioxide coatings on stainless steel mesh electrode while applied -1.0 V(vs. SCE) on the carbon felt. Therefore, it means the heterogeneous photoelectrocatalysis reaction and homogeneous photoelectron Fenton reaction simultaneously occurred in the same reaction system, both the degradation rate and removal ratio of total organic carbon for Orange G dye have been enhanced with comparison to other oxidation processes in this system such as photocatalysis reaction, electro Fenton reaction and photoelectrocatalysis reaction.

摘要 I
誌謝 V
目錄 VI
圖目錄 X
表目錄 XIII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與指標項目 2
第二章 文獻回顧 3
2.1 高級氧化技術 (advanced oxidation processes, AOPs) 3
2.1.1 芬頓法 (Fenton) 4
2.1.2 光芬頓 (photo Fenton, PF) 6
2.1.3 光催化 (photocatalysis) 7
2.1.4 電芬頓 (electro Fenton, EF) 8
2.1.5 光電芬頓 (photo-assisted electro Fenton, PEF) 11
2.1.6 光電輔助之高級氧化技術效能比較 16
2.2 二氧化鈦之特性 18
2.3 二氧化鈦薄膜製備技術 20
2.3.1 沉浸法(dip-coating) 21
2.3.2 網版印刷(screen printing) or噴墨印刷(in-jet printing) 21
2.3.3 化學氣相沉積法(chemical vapor deposition) 22
2.3.4 陽極極化法(anodization) 22
2.3.5 電化學沉積法(electrochemical depostion) 23
2.3.5.1 陽極沉積法(anodic deposition) 23
2.3.5.2 陰極沉積法(cathodic deposition) 25
2.3.6 電泳沉積法(electrophoresis deposition) 26
2.3.6.1 電泳沉積方式 27
2.3.6.2 懸浮液種類 28
2.3.6.3 粒子電荷來源 28
2.3.6.4 膠體粒子之分散性 28
2.3.6.5 黏接劑添加 30
第三章 實驗流程與分析方法 32
3.1 研究架構 32
3.2 實驗流程 33
3.2.1 基材前處理 33
3.2.2 電泳沉積法 33
3.2.2.1 懸浮液配置 34
3.2.2.2 沉積過程操作參數 34
3.2.3 熱處理 35
3.2.4 系統污染物降解效能評估 Orange G脫色實驗 35
3.2.4.1 溶液參數 36
3.2.4.2 系統設計 36
3.2.4.2.1 陰極材料 36
3.2.4.2.2 通入氣體 36
3.2.4.3 能量效率評估 37
3.3 分析方法與設備 37
3.3.1 X光粉末繞射儀 (X-ray powder diffractometer, XRD) 37
3.3.2 界達電位儀 (Zeta potential analysis) 38
3.3.3 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 38
3.3.4 恆電位儀 (Potentiostat) 39
3.3.5 分光光度計 (Spectrophotometer) 40
3.3.6 總有機碳分析儀 (Total organic carbon analyzer) 41
第四章 結果與討論 42
4.1 前處理對基材表面粗糙度之影響 42
4.2 電泳沉積參數對二氧化鈦鍍層重量之影響 43
4.2.1 二氧化鈦懸浮液濃度對於鍍層重量之影響 43
4.2.2 二氧化鈦懸浮液溶劑對於鍍層重量之影響 47
4.2.3 二氧化鈦懸浮液溫度對於鍍層重量影響 53
4.2.4 二氧化鈦懸浮液之離子強度對於鍍層重量影響 58
4.3 熱處理對二氧化鈦鍍層結晶特性分析 60
4.4 光電半導體電極之電化學特性分析 61
4.4.1 陰極材料之電化學特性分析 62
4.4.2二氧化鈦複合不鏽鋼鐵網電極之電化學特性分析 64
4.5 光電半導體系統工作參數最佳化及其效能評析 66
4.5.1 不同形式外加能量之反應途徑 67
4.5.2 系統pH值 68
4.5.3 系統離子強度 69
4.5.4 氣體種類 71
4.5.5 陰極材料 72
4.5.6 電壓值對於系統效能影響評析 73
第五章 結論與建議 77
5.1 結論 77
5.2 建議 78
參考文獻 79
Adán, C., Bahamonde, A., Fernández-García, M. and Martínez-Arias, A. (2007) Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation. Appl. Catal., B: Environ 72(1), 11-17.
Arabatzis, I., Antonaraki, S., Stergiopoulos, T., Hiskia, A., Papaconstantinou, E., Bernard, M. and Falaras, P. (2002) Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3, 5-dichlorophenol degradation. J. Photochem. Photobiol., A 149(1-3), 237-245.
Arnold, S.M., Hickey, W.J. and Harris, R.F. (1995) Degradation of atrazine by Fenton's reagent: condition optimization and product quantification. Environ. Sci. Technol. 29(8), 2083-2089.
Asong, N., Dukes, F., Wang, C. and Shultz, M.J. (2007) The effect of iron doping on the adsorption of methanol on TiO2 probed by sum frequency generation. Chem. Phys. 339(1-3), 86-93.
Balanosky, E., Herrera, F., Lopez, A. and Kiwi, J. (2000) Oxidative degradation of textile waste water. Modeling reactor performance. Water Res 34(2), 582-596.
Bamoulid, L., Maurette, M.T., De Caro, D., Guenbour, A., Ben Bachir, A., Aries, L., El Hajjaji, S., Benoît-Marquié, F. and Ansart, F. (2008) An efficient protection of stainless steel against corrosion: Combination of a conversion layer and titanium dioxide deposit. Surf. Coat. Technol. 202(20), 5020-5026.
Bandara, J., Nadtochenko, V., Kiwi, J. and Pulgarin, C. (1997) Dynamics of oxidant addition as a parameter in the modelling of dye mineralization (Orange II) via advanced oxidation technologies. Water Sci. Technol. 35(4), 87-93.
Basu, R.N., Randall, C.A. and Mayo, M.J. (2001) Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition. J. Am. Ceram. Soc. 84(1), 33-40.
Benitez, F., Beltran-Heredia, J., Real, F. and Acero, J. (2000) Phenolic contaminant acids oxidation by Fenton's reagent. Fresen Environ Bull 9(3), 144-151.
Besra, L. and Liu, M. (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater Sci. 52(1), 1-61.
Bird, C. and Kuhn, A. (1981) Electrochemistry of the viologens. Chem. Soc. Rev. 10(1), 49-82.
Bossmann, S.H., Oliveros, E., Göb, S., Siegwart, S., Dahlen, E.P., Payawan Jr, L., Straub, M., Wörner, M. and Braun, A.M. (1998) New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. J. Phys. Chem. A 102(28), 5542-5550.
Brillas, E., Bastida, R.M., Llosa, E. and Casado, J. (1995) Electrochemical destruction of aniline and 4‐chloroaniline for wastewater treatment using a carbon‐PTFE O‐fed cathode. J. Electrochem. Soc. 142, 1733.
Brillas, E. and Cabot, P.L. (2003) Universitat de Barcelona, Barcelona, Spain Juan Casado Carburos Metálicos SA, Barcelona, Spain. Chemical Degradation Methods for Wastes and Pollutants: Environmental and Industrial Applications 26, 210.
Buxton, G.V., Greenstock, C.L., Helman, W.P. and Ross, A.B. (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals. Phys. Chem. Ref. Data 17, 513-886.
Carneiro, P.A., Osugi, M.E., Fugivara, C.S., Boralle, N., Furlan, M. and B Zanoni, M.V. (2005) Evaluation of different electrochemical methods on the oxidation and degradation of Reactive Blue 4 in aqueous solution. Chemosphere 59(3), 431-439.
Carneiro, P.A., Osugi, M.E., Sene, J.J., Anderson, M.A. and Zanoni, M.V.B. (2004) Evaluation of color removal and degradation of a reactive textile azo dye on nanoporous TiO2 thin-film electrodes. Electrochim. Acta 49(22), 3807-3820.
Catanho, M., Malpass, G.R.P. and Motheo, A.J. (2006) Photoelectrochemical treatment of the dye reactive red 198 using DSA® electrodes. Appl. Catal., B: Environ 62(3), 193-200.
Cho, J., Schaab, S., Roether, J.A. and Boccaccini, A.R. (2008) Nanostructured carbon nanotube/TiO2 composite coatings using electrophoretic deposition (EPD). J. Nanopart. Res. 10(1), 99-105.
Daneshvar, N., Aber, S., Vatanpour, V. and Rasoulifard, M.H. (2008) Electro-Fenton treatment of dye solution containing Orange II: Influence of operational parameters. J. Electroanal. Chem. 615(2), 165-174.
Di Paola, A., Cufalo, G., Addamo, M., Bellardita, M., Campostrini, R., Ischia, M., Ceccato, R. and Palmisano, L. (2008) Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Colloids Surf., A 317(1-3), 366-376.
Flox, C., Ammar, S., Arias, C., Brillas, E., Vargas-Zavala, A.V. and Abdelhedi, R. (2006) Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Appl. Catal., B: Environ 67(1), 93-104.
Flox, C., Cabot, P.L., Centellas, F., Garrido, J.A., Rodríguez, R.M., Arias, C. and Brillas, E. (2007) Solar photoelectro-Fenton degradation of cresols using a flow reactor with a boron-doped diamond anode. Appl. Catal., B: Environ 75(1-2), 17-28.
Foller, P. and Bombard, R. (1995) Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen. J. Appl. Electrochem. 25(7), 613-627.
Formento, A., Montanaro, L. and Swain, M.V. (1999) Micromechanical characterization of electrophoretic‐deposited green films. J. Am. Ceram. Soc. 82(12), 3521-3528.
Fu, X., Zeltner, W.A. and Anderson, M.A. (1995) The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts. Appl. Catal., B: Environ 6(3), 209-224.
Gallegos, A.A., García, Y.V. and Zamudio, A. (2005) Solar hydrogen peroxide. Sol. Energy Mater. Sol. Cells 88(2), 157-167.
Georgieva, J., Armyanov, S., Valova, E., Poulios, I. and Sotiropoulos, S. (2006) Preparation and photoelectrochemical characterisation of electrosynthesised titanium dioxide deposits on stainless steel substrates. Electrochim. Acta 51(10), 2076-2087.
Hammami, S., Oturan, N., Bellakhal, N., Dachraoui, M. and Oturan, M.A. (2007) Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: Application of the experimental design methodology. J. Electroanal. Chem. 610(1), 75-84.
Han, W.Q., Wen, W., Yi, D., Liu, Z., Maye, M.M., Lewis, L., Hanson, J. and Gang, O. (2007) Fe-Doped trititanate nanotubes: formation, optical and magnetic properties, and catalytic applications. J. Phys. Chem. C 111(39), 14339-14342.
Hsieh, C.T. and Teng, H. (2002) Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 40(5), 667-674.
Hu, C.C., Huang, C.C. and Chang, K.H. (2009) A novel solution for cathodic deposition of porous TiO2 films. Electrochem. Commun. 11(2), 434-437.
Hu, C.C., Su, J.H. and Wen, T.C. (2007) Modification of multi-walled carbon nanotubes for electric double-layer capacitors: Tube opening and surface functionalization. J. Phys. Chem. Solids 68(12), 2353-2362.
Huang, C., Dong, C. and Tang, Z. (1993) Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Manage. (Oxford) 13(5-7), 361-377.
Huang, C.C., Hsu, H.C., Hu, C.C., Chang, K.H. and Lee, Y.F. (2010) Morphology control of cathodically deposited TiO2 films. Electrochim. Acta 55(23), 7028-7035.
Kang, B.C., Lee, S.B. and Boo, J.H. (2000) Growth of TiO2 thin films on Si (100) substrates using single molecular precursors by metal organic chemical vapor deposition. Surf. Coat. Technol. 131(1), 88-92.
Kavan, L., O'Regan, B., Kay, A. and Grätzel, M. (1993) Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3. J. Electroanal. Chem. 346(1-2), 291-307.
Kitis, M., Adams, C. and Daigger, G. (1999) The effects of Fenton's reagent pretreatment on the biodegradability of nonionic surfactants. Water Res 33(11), 2561-2568.
Kiwi, J., Pulgarin, C. and Peringer, P. (1994) Effect of Fenton and photo-Fenton reactions on the degradation and biodegradability of 2 and 4-nitrophenols in water treatment. Appl. Catal., B: Environ 3(4), 335-350.
Klosek, S. and Raftery, D. (2001) Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol. J. Phys. Chem. B 105(14), 2815-2819.
Koelmans, H. (1955) Suspensions in non aqueous media, Utrecht.
Lei, L., Hu, X., Yue, P.L., Bossmann, S.H., Göb, S. and Braun, A.M. (1998) Oxidative degradation of poly vinyl alcohol by the photochemically enhanced Fenton reaction. J. Photochem. Photobiol., A 116(2), 159-166.
Lewis, J.A. (2000) Colloidal processing of ceramics. J. Am. Ceram. Soc. 83(10), 2341-2359.
Lin, S.H. and Lo, C.C. (1997) Fenton process for treatment of desizing wastewater. Water Res 31(8), 2050-2056.
Linsebigler, A.L., Lu, G. and Yates Jr, J.T. (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735-758.
Lipczynska-Kochany, E., Sprah, G. and Harms, S. (1995) Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction. Chemosphere 30(1), 9-20.
Lu, M.C., Lin, C.J., Liao, C.H., Ting, W.P. and Huang, R.Y. (2001) Influence of pH on the dewatering of activated sludge by Fenton's reagent. Water Sci. Technol., 327-332.
Ma, T., Kida, T., Akiyama, M., Inoue, K., Tsunematsu, S., Yao, K., Noma, H. and Abe, E. (2003) Preparation and properties of nanostructured TiO2 electrode by a polymer organic-medium screen-printing technique. Electrochem. Commun. 5(4), 369-372.
Oturan, M. (2000) An ecologically effective water treatment technique using electrotrochemically generated application to herbicide 2, 4‐D. J. Appl. Electrochem 30, 475-482.
Oturan, M.A., Aaron, J.J., Oturan, N. and Pinson, J. (1999) Degradation of chlorophenoxyacid herbicides in aqueous media, using a novel electrochemical method†. Pestic Sci. 55(5), 558-562.
Peralta-Hernández, J., Meas-Vong, Y., Rodríguez, F.J., Chapman, T.W., Maldonado, M.I. and Godínez, L.A. (2006) In situ electrochemical and photo-electrochemical generation of the fenton reagent: A potentially important new water treatment technology. Water Res. 40(9), 1754-1762.
Peralta-Hernández, J., Meas-Vong, Y., Rodriguez, F.J., Chapman, T.W., Maldonado, M.I. and Godínez, L.A. (2008) Comparison of hydrogen peroxide-based processes for treating dye-containing wastewater: Decolorization and destruction of Orange II azo dye in dilute solution. Dyes and Pigments 76(3), 656-662.
Pignatello, J.J. (1992) Dark and photoassisted iron (3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol. 26(5), 944-951.
Pignatello, J.J., Oliveros, E. and MacKay, A. (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Environ. Sci. Technol. 36(1), 1-84.
Pimentel, M., Oturan, N., Dezotti, M. and Oturan, M.A. (2008) Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl. Catal., B: Environ 83(1), 140-149.
Pletcher, D. (1999) Indirect oxidations using electrogenerated hydrogen peroxide. Acta Chem. Scand. 53, 745-750.
Qiang, Z., Chang, J.H. and Huang, C.P. (2002) Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res. 36(1), 85-94.
Rigg, T., Taylor, W. and Weiss, J. (1954) The rate constant of the reaction between hydrogen peroxide and ferrous ions. J. Chem. Phys. 22, 575.
Ruppert, G., Bauer, R. and Novalic, S. (1993) Mineralization of cyclic organic water contaminants by the photo-fenton reaction--Influence of structure and substituents. Chemosphere 27(8), 1339-1347.
Russ, B.E. and Talbot, J.B. (1998) An analysis of the binder formation in electrophoretic deposition. J. Electrochem. Soc. 145(1253).
Safarzadeh-Amiri, A., Bolton, J.R. and Cater, S.R. (1996) Ferrioxalate-mediated solar degradation of organic contaminants in water. Solar Energy 56(5), 439-443.
Sarkar, P. and Nicholson, P.S. (1996) Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. J. Am. Ceram. Soc. 79(8), 1987-2002.
Seigo, I., Peter, C., Pascal, C., Mohammad, K.N., Paul, L., Peter, P. and Michael, G. (2007) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog Photovolt 15(7).
Shen, Z., Yang, J., Hu, X., Lei, Y., Ji, X., Jia, J. and Wang, W. (2005) Dual electrodes oxidation of dye wastewater with gas diffusion cathode. Environ. Sci. Technol. 39(6), 1819-1826.
Shimbo, M., Tanzawa, K., Miyakawa, M. and Emoto, T. (1985) Electrophoretic deposition of glass powder for passivation of high voltage transistors. J. Electrochem. Soc. 132, 393.
Šima, J. and Makáňová, J. (1997) Photochemistry of iron (III) complexes. Coord. Chem. Rev. 160, 161-189.
Siracuse, J.A., Talbot, J.B., Sluzky, E. and Hesse, K. (1990) The adhesive agent in cataphoretically coated phosphor screens. J. Electrochem. Soc. 137(1), 346-348.
Sridhar, T., Eliaz, N., Kamachi Mudali, U. and Raj, B. (2002) Electrophoretic deposition of hydroxyapatite coatings and corrosion aspects of metallic implants. Corros. Rev. 20(4-5), 255-294.
Sun, Y. and Pignatello, J.J. (1993) Photochemical reactions involved in the total mineralization of 2, 4-D by iron (3+)/hydrogen peroxide/UV. Environ. Sci. Technol. 27(2), 304-310.
Sussman, A. and Ward, T.J. (1981) Electrophoretic deposition of coatings from glass-isopropanol slurries. RCA Review 42, 178-197.
Tang, W.Z. and Tassos, S. (1997) Oxidation kinetics and mechanisms of trihalomethanes by Fenton's reagent. Water Res 31(5), 1117-1125.
Tarr, M.A. (2003) Chemical degradation methods for wastes and pollutants: environmental and industrial applications, CRC.
Van der Biest, O.O. and Vandeperre, L.J. (1999) Electrophoretic deposition of materials. Annu. Rev. Mater. Sci. 29(1), 327-352.
Venkatadri, R. and Peters, R.W. (1993) Chemical oxidation technologies: ultraviolet light/hydrogen peroxide, Fenton's reagent, and titanium dioxide-assisted photocatalysis. Hazard. Waste Hazard. Mater. 10(2), 107-149.
Walling, C. (1975) Fenton's reagent revisited. Acc. Chem. Res. 8(4), 125-131.
Walling, C. and Kato, S. (1971) Oxidation of alcohols by Fenton's reagent. Effect of copper ion. J Am Chem Soc 93(17), 4275-4281.
Wang, C.T., Hu, J.L., Chou, W.L. and Kuo, Y.M. (2008) Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode. J. Hazard. Mater. 152(2), 601-606.
Wessels, K., Feldhoff, A., Wark, M., Rathousky, J. and Oekermann, T. (2006) Low-temperature preparation of crystalline nanoporous TiO2 films by surfactant-assisted anodic electrodeposition. Electrochem. Solid-State Lett. 9, C93.
Wessels, K., Maekawa, M., Rathousky, J. and Oekermann, T. (2007) One-step electrodeposition of TiO2 dye hybrid films. Thin Solid Films 515(16), 6497-6500.
Xie, Y.B. and Li, X. (2006a) Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2–Ti mesh and reticulated vitreous carbon electrodes. Mater. Chem. Phys. 95(1), 39-50.
Xie, Y.B. and Li, X.Z. (2006b) Degradation of bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation. J. Hazard. Mater. 138(3), 526-533.
Xu, L., Zhao, H., Shi, S., Zhang, G. and Ni, J. (2008) Electrolytic treatment of CI Acid Orange 7 in aqueous solution using a three-dimensional electrode reactor. Dyes and Pigments 77(1), 158-164.
Yanagida, S., Nakajima, A., Kameshima, Y., Yoshida, N., Watanabe, T. and Okada, K. (2005) Preparation of a crack-free rough titania coating on stainless steel mesh by electrophoretic deposition. Mater. Res. Bull. 40(8), 1335-1344.
Yoon, J., Lee, Y. and Kim, S. (2001) Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Water Sci. Technol., 15-21.
Yum, J.H., Nakade, S., Kim, D.Y. and Yanagida, S. (2006) Improved performance in dye-sensitized solar cells employing TiO2 photoelectrodes coated with metal hydroxides. J. Phys. Chem. B 110(7), 3215-3219.
Zainal, Z., Hui, L.K., Hussein, M.Z., Taufiq-Yap, Y.H., Abdullah, A.H. and Ramli, I. (2005) Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps. J. Hazard. Mater. 125(1-3), 113-120.
Zanoni, M.V.B., Sene, J.J. and Anderson, M.A. (2003) Photoelectrocatalytic degradation of Remazol Brilliant Orange 3R on titanium dioxide thin-film electrodes. J. Photochem. Photobiol., A 157(1), 55-63.
Zarei, M., Khataee, A., Ordikhani-Seyedlar, R. and Fathinia, M. (2010) Photoelectro-Fenton combined with photocatalytic process for degradation of an azo dye using supported TiO2 nanoparticles and carbon nanotube cathode: Neural network modeling. Electrochim. Acta 55(24), 7259-7265.
Zhang, Z., Huang, Y. and Jiang, Z. (1994) Electrophoretic deposition forming of SiC‐TZP composites in a nonaqueous sol media. J. Am. Ceram. Soc. 77(7), 1946-1949.
Zhitomirsky, I. (1998) Electrophoretic deposition of chemically bonded ceramics in the system CaO-SiO2-P2O5. J. Mater. Sci. Lett. 17(24), 2101-2104.
Zhitomirsky, I. (2002) Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv. Colloid Interface Sci. 97(1-3), 279-317.
Zhou, M., Yu, Q. and Lei, L. (2008) The preparation and characterization of a graphite-PTFE cathode system for the decolorization of CI Acid Red 2. Dyes and Pigments 77(1), 129-136.
Zhou, M., Yu, Q., Lei, L. and Barton, G. (2007) Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Sep. Purif. Technol. 57(2), 380-387.
Zuo, Y. and Hoigne, J. (1992) Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron (III)-oxalato complexes. Environ. Sci. Technol. 26(5), 1014-1022.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊