跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/25 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張晉豪
研究生(外文):Chang, Chin-Hao
論文名稱:人工重組鋅紫質-肌紅蛋白系統應用於光催化能量轉換之研究
論文名稱(外文):Application of Artificial Zinc Porphyrin-Based Myoglobin System in Photocatalytic Energy Conversion Study
指導教授:吳東昆
指導教授(外文):Wu, Tung-Kung
學位類別:博士
校院名稱:國立交通大學
系所名稱:分子醫學與生物工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:186
中文關鍵詞:肌紅蛋白鋅紫質光催化的電能化學能氫氣硫鐵簇合物
外文關鍵詞:myoglobinzinc porphyrinphotocatalyticelectric energychemical energyhydrogeniron-sulfur cluster
相關次數:
  • 被引用被引用:0
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
現今,地球的化石燃料 (煤炭、石油和天然氣等) 正以每年2000萬年儲存量的驚人速度被使用著;以這樣的速度,地球上的化石燃料將很快的被消耗殆盡。許多科學家們開始致力於替代能源的開發與研究,其中以太陽能來說,其照射地球一小時的能量 (4.3 x 1020 J/hour) 就相當於地球人類一年的使用量 (4.1 x 1020 J) ,再加上其生產過程無環境污染,又不會消耗其他地球資源或導致地球溫室效應的優點,這樣的「綠色能源」被視為現今替代能源的開發重點。然而以自然界來說,能最有效率直接將光子轉換成電子並進而轉換成化學能的系統就是綠色植物及光合作用菌,而這樣有效率的系統基本上是由可吸收光的輔基及蛋白質催化的電子轉移機制所組成的。於是我們基於環保能源及仿生的概念去架構一個半人工複合的蛋白質系統,我們利用生物性材料-脫輔基肌紅蛋白 (apo-myoglobin) 去重組具有不同結構及吸光特性的輔基-鋅原紫質 (ZnPP) 與鋅-乙炔苯酸紫質 (ZnPE1) ,並將這些重組的鋅原紫質與鋅-乙炔苯酸紫質肌紅蛋白 (ZnPP-Mb and ZnPE1-Mb) 當做模板蛋白 (model protein) 去應用於光能轉化學能、光能轉電能與光能產氫方面的研究。
首先,我們已成功的將鋅原紫質 (ZnPP) 與鋅-乙炔苯酸紫質(ZnPE1) 重組進脫輔基肌紅蛋白 (apo-myoglobin) 並利用紫外光-可見光光譜 (UV-Vis) 、螢光光譜 (Fluorescence) 、圓二色光譜儀 (CD) 、時間-解析螢光光譜 (TCSPC) 去分析其物理與光學特性,及利用循環伏安法 (CV) 及微差脈衝伏安法 (DPV) 去測得其氧化還原電位。在時間瞬態光譜研究方面,我們研究了ZnPP/ZnPE1在四氫&;#21579;喃 (THF) 、磷酸鉀緩衝溶液 (KPi) 及包覆進肌紅蛋白 (myoglobin) 等不同環境下的電子受激發後緩解的現象。證實當鋅原紫質 (ZnPP) 與鋅-乙炔苯酸紫質( ZnPE1) 被包覆到肌紅蛋白 (myoglobin) 時,能延長光敏化劑受光激發的生命期並在水相環境中能有效避免聚集現象的發生。
進一步,在光能-化學能轉換的研究方面,利用所架構的半人工複合蛋白質系統結合可氧化還原的受質以研究光激發電子傳遞的機制,當重組的鋅原紫質與鋅-乙炔苯酸紫質肌紅蛋白 (ZnPP-Mb and ZnPE1-Mb) 結合氧化態菸草醯胺腺嘌呤二核&;#33527;酸磷酸鹽 (NADP+) 與還原態菸鹼醯胺腺嘌呤雙核&;#33527;酸 (NADH) 受質,在有電子提供者及缺乏電子提供者存在下照光反應,可觀察到電子轉移及能量轉換的現象。證實此半人工複合蛋白質系統具有發展研究光化學電池的潛力。
在光能轉換電能的部分,已成功的將鋅紫質肌紅蛋白 (ZnPP-Mb) 修飾吸光團-伊紅 (Eosin) ,並比較其與野生型肌紅蛋白、鋅紫質肌紅蛋白之光電轉換效率。結果發現在結合二氧化鈦陽極 (TiO2 anode) 、水相電解液及白金陰極 (Pt cathode) 的染敏太陽能電池 (DSSC) 系統照光下,可觀察到光電流的產生。以伊紅修飾之重組鋅紫質肌紅蛋白之光電轉換效率高於野生型肌紅蛋白及鋅紫質肌紅蛋白。
光能產氫方面的研究方面,利用鋅原紫質與鋅乙炔苯酸紫質肌紅蛋白 (ZnPP-Mb and ZnPE1-Mb) 當作光敏劑結合電子提供者 (electron donor) 、電子繼電者 (electron relayer) 及白金催化劑 (Pt catalyst) 在受光激發下可觀察到氫氣的產生。另外在氫氣催化劑的研究方面,近年來利用結晶學的技術,科學家已成功地解出去磺弧菌 (Desulfovibrio desulfurican) 以及巴斯德氏梭狀芽胞桿菌 (Clostridium pasteurianum) 中鐵-鐵產氫&;#37238; ([FeFe]-Hydrogenase) 的X-ray晶體結構。而這類酵素活化中心的氫簇分子 (H-cluster) 就是使其具有高效能產生氫氣的催化中心。我們進一步模擬並合成出鐵-鐵產氫&;#37238;活化中心-氫簇分子(H-cluster)的化學結構-[(μ-DT)Fe2(CO)6] (DT: dithiolate) ,並在其雙硫架橋上取代成不同的官能基及加入不同的磷衍生物並利用有機相和水相兩種不同的反應系統來探討這些仿生酵素活化中心催化氫氣產生的效率以及機制。在之後預期能合併鋅原紫質與鋅-乙炔苯酸紫質肌紅蛋白 (ZnPP-Mb and ZnPE1-Mb) 與仿生合成之硫鐵簇分子 (iron-sulfur cluster) 去架構一個新的光催化仿生產氫系統。

Today, world storage of fossil fuels such as coal, oil and natural gas is consumed with the alarming rate, 20 million years storage capacity per year. There is no doubt that fossil fuels will soon be depleted. As a result, many scientists have started to focus on development and research of alternative energy. Sunlight is not only the most obvious but also most predominant renewable alternative energy source on Earth. When solar energy strikes the Earth's surface for one hour (4.3 x 1020 J/hour), it is more than all human-related energy consumption on the planet for one year (4.1 x 1020 J). In addition, it does not consume any other energy source and does not cause pollution or the “green house effect” in production. This kind of “green energy” is a considered key to develop alternative energy.
In nature, photosynthesis, which is composed by chromospheres and redox protein with electron transfer activity, is the most universal, effective and important photo-chemical energy conversion system. This process is based on conversion of solar energy into chemical energy by a series of intermolecular energy and electron transfer reactions. Based on the “green energy” and biomimetic concept, an artificial metalloporphyrin-myoglobin complex has been constructed. Zinc protoporphyrin (ZnPP) and 5-(4-carboxy-phenylethynyl)-10,20-biphenylporphinato zinc (II) (ZnPE1) have been reconstituted into apo-myoglobin (apo-Mb) and have been applied as model proteins to light-to-chemical energy, light-to-electric energy, and light-to-hydrogen conversion studies. In addition, UV-Vis, fluorescence, circular dichroism (CD), and time-correlated single-photon counting (TCSPC) spectra analysis have been used to characterize the biophysical and optic properties of these reconstituted ZnPP-Mb/ZnPE1-Mb. The redox potential of ZnPP-Mb/ZnPE1-Mb was further confirmed by cyclic voltammetry (CV) and differential pulse voltammetry techniques (DPV). The fluorescence transients exhibited a biphasic decay feature with the signal approaching an asymptotic offset: at λem = 630 nm, two time constants of τ1 = 0.5 ns and τ2 = 2.2 ns for ZnPP-Mb and τ1 = 0.6 ns and τ2 = 2.5 ns for ZnPE1-Mb, respectively.
In studies of light-to-chemical energy conversion, an artificial protein-based photo-chemical energy conversion system which mimics photosystem I has been constructed using ZnPP-Mb/ZnPE1-Mb as a photosensitizer, nicotinamide adenine dinucleotide phosphate (NADP+) as an electron acceptor, and triethanolamine (TEOA) as a sacrificial electron donor. Moreover, this artificial system can proceed the reverse oxidation reaction by providing nicotinamide adenine dinucleotide (NADH) as electron donor and in absence of TEOA. Apo-Mb is a key factor to keep monomeric ZnPP/ZnPE1 in buffer solution, prevent aggregated quenching, and improve the efficiency in photo-induced redox reaction.
In studies of light-to-electric energy conversion, Mb, ZnPP-Mb, and Eo-ZnPP-Mb were used as photosensitizers to functionalize TiO2 nanocrystalline films for biosensitized solar-cell (BSSC) applications. For the Mb-sensitized solar cell, poor cell performance is due to a reduction Fe(III) → Fe(II) that produces a photocurrent density of a device that is smaller than its unsensitized counterpart. The efficiencies of power conversion and photocurrent for both ZnPP-Mb and Eo-ZnPP-Mb–sensitized solar cell are enhanced about ten times due to superior charge separation between TiO2 and the protein, and due to smaller current leakage between TiO2 and the electrolyte. The cell performances of the BSSC devices are discussed in terms of an equivalent-circuit model.
In studies of light-to-hydrogen conversion, a photocatalytic hydrogen generation system has been constructed using ZnPP-Mb (or ZnPE1-Mb) as photosensitizers to combine the electron donor, electron relayer, and catalyst. Catalysts that mimic hydrogenases have also been investigated. The crystal structures of one kind of hydrogenases, [FeFe]-hydrogenases from Desulfovibrio desulfuricans and Clostridium pasteurianum, have been elucidated by X-ray crystallography. The organometallic H-cluster unit of its active site is involved in water splitting and provides a very high rate of hydrogen generation. We try to mimic the structure of the H-cluster, [(μ-DT)Fe2(CO)6] (DT: dithiolate) in [FeFe] hydrogenases by replacement of bridging dithiolate ligands and modification of various phosphine ligands to study their catalytic activity for hydrogen production. Furthermore, the efficiency of photocatalytic hydrogen generation using these compounds as catalysts are investigated in aqueous and organic phase systems. It is expected to conjugate ZnPP-Mb (or ZnPE1-Mb) with artificial iron-sulfur clusters in a homogeneous catalytic system to further investigate light-driven hydrogen production activity.

摘要 i
Abstract iii
誌謝 (Acknowledgement) vi
Table of Contains viii
Table of Figures xii
Table of Schemes xvii
Table of Tables xviii
Chapter 1 General Introduction 1
1.1 Global Demand for Energy 1
1.2 Photosynthesis 2
1.3 Techniques for Converting Sunlight into Energy 5
1.3.1 Solar Photovoltaic Cell 5
1.3.2 Light-Driven Hydrogen Production 13
1.4 Myoglobin 17
1.5 Porphyrin 19
1.6 Molecular Engineering of Myoglobin: Convert It to Peroxidase 21
1.7 Relative Applications of Myoglobin in Photoinduced Electron Transfer and Energy Conversion Study 23
1.8 Hydrogenases 25
1.9 Artificial Iron-Sulfur Clusters 28
Chapter 2 Thesis Organization 31
Chapter 3 Physical/Chemical Properties Analysis of Reconstituted Metallo-Porphyrin Myoglobins 34
3.1 Introduction 34
3.2 Materials and Methods 36
3.2.1 Materials 36
3.2.2 Methyl Ethyl Ketone Method- Obtain Wild Type Apo-Myoglobin from Myoglobin 37
3.2.3 Reconstitution of Apo-Myoglobin with Free Base and Metallo-Porphyrins 38
3.2.4 Steady-State Spectral Measurements 38
3.2.5 Circular Dichroism (CD) Spectroscopic Methods 38
3.2.6 Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) Analysis 39
3.2.7 Picosecond Time-Resolved Fluorescence Measurements 40
3.2.8 Femtosecond Time-Resolved Fluorescence Measurements 40
3.3 Results and Discussion 41
3.3.1 UV-vis and Fluorescence Analysis Results of Reconstituted Free Base and Metallo-Porphyrin-Mbs 41
3.3.2 Circular Dichroism (CD) Spectropolarimetry of Reconstituted Free Base and Metallo-Porphyrin-Mbs 46
3.3.3 Energy Level of ZnPP-Mb/ZnPE1-Mb 48
3.3.4 Picosecond Fluorescence Decays of ZnPP-Mb/ZnPE1-Mb 52
3.3.5 Anisotropy Dynamics Analysis of Reconstituted ZnPP-Mb and ZnPE1-Mb 55
3.3.6 Femtosecond Fluorescence Dynamics of ZnPP Monomers in THF Solution, ZnPP Aggregates and ZnPP-Mb in Buffer Solution 58
3.3.7 Photostability of the Reconstituted ZnPP-Mb 66
3.4 Conclusions 68
Chapter 4 Reconstituted Metallo-porphyrin Mbs Based Light-to-Chemical Energy Conversion System 70
4.1 Introduction 70
4.2 Materials and Methods 74
4.2.1 Obtainment of Wild Type Apo-Myoglobin (Horse) and Purification of Myoglobin Mutants (Sperm Whale) 74
4.2.2 Reconstitution of Apo-Myoglobin with ZnPP and ZnPE1 74
4.2.3 Steady-State Spectral Measurements 74
4.2.4 Picosecond Fluorescence Decays and Anisotropy Dynamics Measurements 74
4.2.5 Photoirradiation Experiment 75
4.2.6 Enzymatic Product Characterization of Photoinduced Reduction Reactions 75
4.3 Results and Discussion 76
4.3.1 Reconstituted ZnPP-Mb/ZnPE1-Mb Based Light-Chemical Energy Conversion System: Photoinduced Reduction of NADP+ 76
4.3.1.1 Effect of Photoirradiated Duration and Electron Donor 76
4.3.1.2 UV-Vis Spectra Change for ZnPP-Mb/ZnPE1-Mb as Photosensitizer in Photoinduced Reduction of NADP+ 81
4.3.1.3 The Catalytic Velocity of ZnPP-Mb and ZnPE1-Mb as Photosensitizer in Photoinduced Reduction of NADP+ 83
4.3.1.4 Reduction Product Confirmation by Enzymatic Assay 86
4.3.2 Reconstituted ZnPP-Mb/ZnPE1-Mb Based Light-Chemical Energy Conversion System: Photoinduced Oxidation of NADH 87
4.3.2.1 UV-Vis Spectra Analysis of ZnPP-Mb and ZnPE1-Mb as Photosensitizer in Photoinduced Oxidation of NADH 87
4.3.2.2 Oxidation Product Confirmation by Enzymatic Assay 92
4.3.3 Proposed Mechanism of ZnPP/ZnPE1-Mb-Based Artificial Photo-Redox System 94
4.3.4 Mutagenesis Effect of Mb on ZnPE1-Mb-Based Artificial Photo-Redox System 96
4.3.4.1 Photoinduced NADP+ Reduction Reaction of ZnPE1-MbWT and ZnPE1-Mb Mutants 97
4.3.4.2 Photoinduced NADH Oxidation Reaction of ZnPE1-MbWT and ZnPE1-Mb Mutants 98
4.4 Conclusions 100
Chapter 5 Light-to-Electric Energy Conversion Study: Myoglobin-Based Bio-Sensitized Solar Cells 102
5.1 Introduction 102
5.2 Materials and Methods 106
5.2.1 Preparation of Apo-Mb 106
5.2.2 Reconstitution of Apo-Mb with ZnPP 106
5.2.3 Preparation of Eosin-Modified ZnPP-Mb 106
5.2.4 Protein Immobilization on TiO2 Films 107
5.2.5 Steady-State and Temporally Resolved Spectral Measurements 107
5.2.6 Photovoltaic Measurements 107
5.3 Results and Discussion 108
5.3.1 Steady-State Spectral Measurements of Mb, ZnPP-Mb, Eo-ZnPP-Mb, and Eosin 108
5.3.2 Time-Resolved Spectral Measurements of Eosin and Eo-ZnPP-Mb 110
5.3.3 Fabrication of a Bio-Sensitized Solar Cell 112
5.3.4 Photovoltaic Measurements 114
5.4 Conclusions 117
Chapter 6 Application of Reconstituted Zinc Porphyrin-Mbs and Artificial Synthetic Iron-Sulfur Clusters in Light-Driven Hydrogen Generation 119
6.1 Introduction 119
6.2 Materials and Methods 122
6.2.1 Synthesis of Colloidal PVA-Pt 122
6.2.2 Synthesis of Fe2(S2C3H6)(CO)6 122
6.2.3 Synthesis of 3-Mercapto-2-(Mercaptomethyl)-Propanoic Acid 123
6.2.4 Synthesis of Fe2(AspH)(CO)6 124
6.2.5 Synthesis of 1,2 Dithiol of Boc-Serinol 125
6.2.6 Synthesis of Fe2(Boc-NS2C3H8)(CO)6 127
6.2.7 Synthesis of Phosphine Ligands 127
6.2.8 Electrochemistry Measurements 129
6.2.9 The Conditions of Photocatalytic Hydrogen Production 130
6.3 Results and Discussion 131
6.3.1 Confirming the Synthetic Product of Colloidal PVA-Pt 131
6.3.2 Photocatalytic Hydrogen Evolution from Water Using ZnPP-Mb/ZnPE1-Mb as Photosensitizers 132
6.3.3 Identification of Synthetic Products for Artificial Iron-Sulfur Clusters 135
6.3.4 Electrochemical Properties of Artificial Iron-Sulfur Clusters 138
6.3.5 Identification of Synthetic Products for Phosphine Ligands 142
6.3.6 Photocatalytic Hydrogen Evolution from Water Using Artificial Iron-Sulfur Clusters as Catalysts 144
6.3.7 Photocatalytic Hydrogen Evolution from Formic Acid Using Artificial Iron-Sulfur Clusters as Catalysts 148
6.4 Conclusions 159
Chapter 7 Future Perspectives 162
References 166
Appendix 180
(1) Grätzel, M. Chem. Lett. 2005, 34, 8.
(2) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729.
(3) Arnold, W.; Azzi, J. R. Proc. Natl. Acad. Sci. U. S. A. 1968, 61, 29.
(4) Arnon, D. I. Proc. Natl. Acad. Sci. U. S. A. 1971, 68, 2883.
(5) Mathews, C. K.; Holde, K. E. V.; Ahern, K. G. Biochemistry; 3rd ed.; Prentice Hall: United Kingdom, 2000.
(6) SHARP Environmental and Report 2010, 2010.
(7) SHARP Environmental and Report 2009, 2009.
(8) Schmitz, G. NREL Achieves Solar-Electric Record, 2001.
(9) GBI Research, Thin - Film Photovoltaic (PV) Cells Market Analysis to 2020, 2010.
(10) Schock, H. W. Appl. Surf. Sci. 1996, 92, 206.
(11) Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; R. Noufi Progress in Photovoltaics 2008, 16, 235.
(12) Staebler, D. L.; Wronski, C. R. J. Appl. Physics. 1980, 51, 3262.
(13) Nelson, J. The Physics of Solar Cells; Imperial College Press: London, 2003.
(14) Putseiko, E. K.; Terenin, A. N. Zhur. Fiz. Khim. 1949, 23, 676.
(15) Kautek, W.; Gerischer, H.; Tributsch, H. J. Electrochem. Soc. 1980, 127.
(16) Kautek, W.; Gerischer, H. J. Electrochem. Soc. 1981, 26, 1771.
(17) Tubbesing, K.; Meissner, D.; Memming, R.; Kastening, B. J. Electroanal. Chem. 1986, 214, 685.
(18) Sinn, C.; Meissner, D.; Memming, R. J. Electrochem. Soc. 1990, 137, 168.
(19) Chen, S.; Deb, S. K.; Witzke, H.; Patent, U. S., Ed. 1978; Vol. 4,080,488.
(20) O’Regan, B.; Grätzel, M. Nature 1991, 353, 737.
(21) Martinson, A. B.; Hamann, T. W.; Pellin, M. J.; Hupp, J. T. Chem. Eur. J. 2008, 14, 4458.
(22) Vlachopoulos, N.; Liska, P.; Augustynski, J.; Grätzel, M. J. Am. Chem. Soc. 1988, 110, 1216.
(23) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382.
(24) Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C. H.; Grätzel, M. Inorg. Chem. 1999, 38, 6298.
(25) Gao, F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M.; Jing, X.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2008, 130, 10720.
(26) Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Grätzel, M. Nat. Mater. 2003, 2, 402.
(27) Nazeeruddin, M. K.; Pechy, P.; Grätzel, M. Chem. Commun. 1997, 1705.
(28) Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613.
(29) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835.
(30) Campbell, W. M.; Jolley, K. W.; Wagner, P.; Wagner, K.; Walsh, P. J.; Gordon, K. C.; S.-M., L.; Nazeeruddin, M. K.; Wang, Q.; Grätzel, M.; David, L. J. Phys. Chem. C. 2007, 111, 11760.
(31) Bessho, T.; Zakeeruddin, S. M.; Yeh, C. Y.; Diau, E. W.; Gratzel, M. Angew. Chem. Int. Ed. Engl. 2010, 49, 6646.
(32) Communities, E. Hydrogen Energy and Fuel Cells- A vision of our future, 2003.
(33) Wilhelm, E.; Fowler, M. Bull. Sci. Technol. Soc. 2006, 26, 278.
(34) Dougherty, W.; Kartha, S.; Rajan, C.; Lazarus, M.; Bailie, A.; Runkle, B. Energy Policy 2009, 37, 56.
(35) Fujishima, A.; Honda, K. Nature 1972, 238, 37.
(36) Kiwi, J.; Grätzel, M. Nature 1979, 281, 657.
(37) Silva, C. G.; de Miguel, M.; Ferrer, B.; Alvaro, M.; Garcia, H. Photochem. Photobiol. Sci. 2009, 8, 1650.
(38) Tinker, L. L.; McDaniel, N. D.; Curtin, P. N.; Smith, C. K.; Ireland, M. J.; Bernhard, S. Chem. Eur. J. 2007, 13, 8726.
(39) Hambourger, M.; Gervaldo, M.; Svedruzic, D.; King, P. W.; Gust, D.; Ghirardi, M.; Moore, A. L.; Moore, T. A. J. Am. Chem. Soc. 2008, 130, 2015.
(40) Reisner, E.; Powell, D. J.; Cavazza, C.; Fontecilla-Camps, J. C.; Armstrong, F. A. J. Am. Chem. Soc. 2009, 131, 18457.
(41) Na, Y.; Wang, M.; Pan, J.; Zhang, P.; Akermark, B.; Sun, L. Inorg. Chem. 2008, 47, 2805.
(42) Zhang, P.; Wang, M.; Na, Y.; Li, X.; Jiang, Y.; Sun, L. Dalton Trans. 2010, 39, 1204.
(43) Hameed, A.; Gondal, M. A.; Yamani, Z. H. Catal. Commun. 2004, 5, 715.
(44) Gondal, M. A.; Hameed, A.; Yamani, Z. H.; Suwaiyan, A. Appl. Catal. A: Gen. 2004, 268, 159.
(45) Tennakone, K.; Bandara, J. Appl. Catal. A: Gen. 2001, 208, 335.
(46) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.
(47) Maeda, K.; Domen, K. J. Phys. Chem. C. 2007, 111, 7851.
(48) Van de Krol, R.; Liang, Y.; Schoonman, J. J. Mater. Chem. 2008, 18, 2311.
(49) Serpone, N.; Pelizzetti, E. Photocatalysis; Wiley: New York, 1989.
(50) Grätzel, M. Energy Resources through Photochemistry and Catalysis; Academic Press: New York, 1983.
(51) Nozik, J. Annu. Rev. Phys. Chem. 1978, 189.
(52) Pleskov, Y. V.; Gurevich, Y. Y. Semiconductor Photoelectrochemistry; Consultants Bureau: New York 1986.
(53) Kim, W.; Tachikawa, T.; Majima, T.; Li, C.; Kim, H. J.; Choi, W. Energy Environ. Sci. 2010, 3, 1789.
(54) Wittenberg, J. B.; Wittenberg, B. A. J. Exp. Biol. 2003, 206, 2011.
(55) Garry, D. J.; Mammen, P. P. Adv. Exp. Med. Biol. 2007, 618, 181.
(56) Wittenberg, J. B. Physiol. Rev. 1970, 50, 559.
(57) Ordway, G. A.; Garry, D. J. J. Exp. Biol. 2004, 207, 3441.
(58) Kendrew, J. C.; Bodo, G.; Dintzis, H. M.; Parrish, R. G.; Wyckoff, H.; Phillips, D. C. Nature 1958, 181, 662.
(59) Zhu, Y.; Silverman, R. B. J. Org. Chem. 2006, 72, 233.
(60) Merritt, J. E.; Loening, K. L. Pure Appl. Chem. 1978, 51, 2251.
(61) Cherian, S.; Wamser, C. C. J. Phys. Chem. B 2000, 104, 3624.
(62) Ozaki, S.; Roach, M. P.; Matsui, T.; Watanabe, Y. Acc. Chem. Res. 2001, 34, 818.
(63) Kato, S.; Ueno, T.; Fukuzumi, S.; Watanabe, Y. J. Biol. Chem. 2004, 279, 52376.
(64) Nalwa, H. S. Handbook of Organic Conductive Molecules and Polymers, 1997; Vol. 1-4.
(65) Quillin, M. L.; Li, T.; Olson, J. S.; Phillips Jr, G. N.; Duo, Y.; Ikeda-Saito, M.; Regan, R.; Carlson, M.; Gibson, Q. H.; Li, H.; Elber, R. J. Mol. Biol. 1995, 245, 416.
(66) Yang, H. J.; Matsui, T.; Ozaki, S.; Kato, S.; Ueno, T.; Phillips, G. N., Jr.; Fukuzumi, S.; Watanabe, Y. Biochemistry 2003, 42, 10174.
(67) 林宏明 Site-Saturated Mutational Analysis of Isoleucine 107 from Sperm Whale Myoglobin on the Effect of Peroxidase Activity, 交通大學碩士論文2006.
(68) Zhou, J. S.; Granda, E. S. V.; Leontis, N. B.; Rodgers, M. A. J. J. Am. Chem. Soc. 1990, 112, 5074.
(69) McLendon, G.; Hake, R. Chem. Rev. 1992, 92, 481.
(70) Tsukahara, K.; Okada, M.; Asami, S.; Nishikawa, Y.; Sawai, N.; Sakurai, T. Coord. Chem. Rev. 1994, 132, 223.
(71) Nocek, J. M.; Zhou, J. S.; Forest, S. D.; Priyadarshy, S.; Beratan, D. N.; Onuchic, J. N.; Hoffman, B. M. Chem. Rev. 1996, 96, 2459.
(72) Tsukahara, K.; Kimura, C.; Kaneko, J.; Abe, K.; Matsui, M.; Hara, T. Inorg. Chem. 1997, 36, 3520.
(73) Gray, H. B.; Winkler, J. R. Electron Transfer in Chemistry; Wiley-VCH: Weinheim, 2001; Vol.3.
(74) Takashima, H.; Araki, A.; Takemoto, K.; Yoshikawa, N.; Tsukahara, K. J. Biol. Inorg. Chem. 2006, 11.
(75) Takashima, H.; Tara, C.; Namikawa, S.; Kato, T.; Araki, Y.; Ito, O.; Tsukahara, K. J. Phys. Chem. B 2006, 110, 26413.
(76) Matsuo, T.; Asano, A.; Ando, T.; Hisaeda, Y.; Hayashi, T. Chem. Commun. 2008, 3684.
(77) Hayashi, T.; Hisaeda, Y. Acc. Chem. Res. 2002, 35, 35.
(78) Heleg-Shabtai, V.; Gabriel, T.; Willner, I. J. Am. Chem. Soc. 1999, 121, 3220.
(79) Willner, I.; Willner, B. Coord. Chem. Rev. 2003, 245, 139.
(80) Hamachi, I.; Tanaka, S.; Shinkai, S. J. Am. Chem. Soc. 1993, 115, 10458.
(81) Hu, Y. Z.; Takashima, H.; Tsukiji, S.; Shinkai, S.; Nagamune, T.; Oishi, S.; Hamachi, I. Chemistry (Weinheim an der Bergstrasse, Germany) 2000, 6, 1907.
(82) Hu, Y. Z.; Tsukiji, S.; Shinkai, S.; Oishi, S.; Hamachi, I. J. Am. Chem. Soc. 2000, 122, 241.
(83) Rang, Y. J.; Spikes, J. D. Arch. Biochem. Biophys. 1976, 172, 565.
(84) Bellelli, A.; Brzezinski, P.; Arese, M.; Cutruzzola, F.; Silvestrini, M. C.; Brunori, M. Biochem. J. 1996, 319, 407.
(85) Crnogorac, M. M.; Kostic, N. M. Inorg. Chem. 2000, 39, 5028.
(86) Hitomi, Y.; Hayashi, T.; Wada, K.; Mizutani, T.; Hisaeda, Y.; Ogoshi, H. Angew. Chem. Int. Ed. Engl. 2001, 40, 1098.
(87) Liang, Z. X.; Nocek, J. M.; Huang, K.; Hayes, R. T.; Kurnikov, I. V.; Beratan, D. N.; Hoffman, B. M. J. Am. Chem. Soc. 2002, 124, 6849.
(88) Murakami, H.; Matsumoto, R.; Okusa, Y.; Sagara, T.; Fujitsuka, M.; Ito, O.; Nakashima, N. J. Mater. Chem. 2002, 102, 2026.
(89) Hay, S.; Wallace, B. B.; Smith, T. A.; Ghiggino, K. P.; Wydrzynski, T. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 17675.
(90) Takashima, H.; Tanaka, M.; Hasegawa, Y.; Tsukahara, K. J. Biol. Inorg. Chem. 2003, 8, 499.
(91) Satoh, R.; Ohba, Y.; Yamauchi, S.; Iwaizumi, M.; Kimura, C.; Tsukahara, K. J. Chem. Soc., Faraday Trans. 1997, 93, 537.
(92) Hayashi, T.; Takimura, T.; Ohara, T.; Hitomi, Y.; Ogoshi, H. J. Chem. Soc., Chem. Commun. 1999, 250.
(93) Tsukahara, K.; Asami, S. Chem. Lett. 1991, 8, 1337.
(94) Tsukahara, K.; Okada, M. Chem. Lett. 1992, 8, 1543.
(95) Nishiyama, K.; Uchiyama, M.; Mie, Y.; Taniguchi, I. Chem. Lett. 1999, 28, 357.
(96) Nishiyama, K.; Mie, Y.; Kishita, M.; Yamada, C.; Kitagawa, R.; Taniguchi, I. Chem. Lett. 2005, 34, 1032.
(97) Adams, M. W.; Stiefel, E. I. Science 1998, 282, 1842.
(98) Frey, M. Chembiochem 2002, 3, 153.
(99) Vignais, P. M.; Billoud, B.; Meyer, J. FEMS Microbiol. Rev. 2001, 25, 455.
(100) Stephenson, M.; Stickland, L. H. Biochem. J. 1931, 25, 215.
(101) Stephenson, M.; Stickland, L. H. Biochem. J. 1931, 25, 205.
(102) Shima, S.; Pilak, O.; Vogt, S.; Schick, M.; Stagni, M. S.; Meyer-Klaucke, W.; Warkentin, E.; Thauer, R. K.; Ermler, U. Science 2008, 321, 572.
(103) Nicolet, Y.; Lemon, B. J.; Fontecilla-Camps, J. C.; Peters, J. W. Trends. Biochem. Sci. 2000, 25, 138.
(104) Adams, M. W. Biochim. Biophys. Acta. 1990, 1020, 115.
(105) Brugna, M.; Giudici-Orticoni, M. T.; Spinelli, S.; Brown, K.; Tegoni, M.; Bruschi, M. Proteins 1998, 33, 590.
(106) Frey, M.; Fontecilla-Camps, J. C.; Volbeda, A. Nickel-iron hydrogenases Handbook of Metalloproteins; John Wiley & Sons: Chichester, 2001.
(107) Sawers, R. G. Biochem. Soc. Trans. 2005, 33, 42.
(108) Evans, D. J.; Pickett, C. J. Chem. Soc. Rev. 2003, 32, 268.
(109) Zirngibl, C.; Hedderich, R.; Thauer, R. K. FEBS Lett. 1990, 261, 112.
(110) Zirngibl, C.; Van Dongen, W.; Schworer, B.; Von Bunau, R.; Richter, M.; Klein, A.; Thauer, R. K. Eur. J. Biochem. 1992, 208, 511.
(111) Karyakin, A. A.; Morozov, S. V.; Karyakina, E. E.; Zorin, N. A.; Perelygin, V. V.; Cosnier, S. Biochem. Soc. Trans. 2005, 33, 73.
(112) Vincent, K. A.; Cracknell, J. A.; Lenz, O.; Zebger, I.; Friedrich, B.; Armstrong, F. A. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 16951.
(113) Vincent, K. A.; Parkin, A.; Lenz, O.; Albracht, S. P.; Fontecilla-Camps, J. C.; Cammack, R.; Friedrich, B.; Armstrong, F. A. J. Am. Chem. Soc. 2005, 127, 18179.
(114) Frey, M. ChemBioChem 2002, 3, 153.
(115) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853.
(116) Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Structure 1999, 7, 13.
(117) Artero, V.; Fontecave, M. Coord. Chem. Rev. 2005, 249, 1518.
(118) Thomas, C. M.; R¨udiger, O.; Liu, T.; Carson, C. E.; Hall, M. B.; Darensbourg, M. Y. Organometal. 2007, 26, 3976.
(119) Ibrahim, S. K.; Liu, X.; Tard, C.; Pickett, C. J. Chem. Commun. (Camb) 2007, 1535.
(120) Vijaikanth, V.; Capon, J.; Gloaguen, F.; Petillon, F. Y.; Schollhammer, P.; Talarmin, J. Electrochem. Commun. 2005, 7, 427.
(121) Green, K. N.; Hess, J. L.; Thomas, C. M.; Darensbourg, M. Y. Dalton Trans. 2009, 22, 4344.
(122) Adams, R. D.; Miao, S. Inorg. Chem. 2004, 43, 8414.
(123) Capon, J.-F.; Gloaguen, F.; Schollhammer, P.; Talarmin, J. J. Electroanal. Chem. 2006, 595, 47.
(124) Ott, S.; Borgstrom, M.; Kritikos, M.; Lomoth, R.; Bergquist, J.; Akermark, B.; Hammarstrom, L.; Sun, L. Inorg. Chem. 2004, 43, 4683.
(125) Ott, S.; Kritikos, M.; Akermark, B.; Sun, L. Angew. Chem. Int. Ed. Engl. 2003, 42, 3285.
(126) Salyi, S.; Kritikos, M.; Akermark, B.; Sun, L. Chemistry 2003, 9, 557.
(127) Ekstrom, J.; Abrahamsson, M.; Olson, C.; Bergquist, J.; Kaynak, F. B.; Eriksson, L.; Sun, L.; Becker, H. C.; Akermark, B.; Hammarstrom, L.; Ott, S. Dalton Trans. 2006, 4599.
(128) Cui, H.; Wang, M.; Duan, L.; Sun, L. J. Coord. Chem. 2008, 61, 1856.
(129) Song, L. C.; Tang, M. Y.; Su, F. H.; Q.M., H. Angew. Chem. Int. Ed. Engl. 2006, 45, 1130.
(130) Song, L. C.; Tang, M. Y.; Mei, S. Z.; Huang, J. H.; Hu, Q. M. Organometal. 2007, 26, 1575.
(131) Li, X.; Wang, M.; Zhang, S.; Pan, J.; Na, Y.; Liu, J.; Akermark, B.; Sun, L. J. Phys. Chem. B 2008, 112, 8198.
(132) Schmidt, M.; Contakes, S. M.; Rauchfuss, T. B. J. Am. Chem. Soc. 1999, 121, 9736.
(133) Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. Angew. Chem. Int. Ed. Engl 1999, 38, 3178.
(134) Le Cloirec, A.; Best, S. P.; Borg, S.; Davies, S. C.; Evans, D. J.; Hughes, D. L.; Pickett, C. J. Chem. Commun. 1999, 22, 2285−2286.
(135) Capon, J. F.; Ezzaher, S.; Gloaguen, F.; Petillon, F. Y.; Schollhammer, P.; Talarmin, J. Chemistry 2008, 14, 1954.
(136) Hasan, M. M.; Hursthouse, M. B.; Kabir, S. E.; Malik, K. M. A. Polyhedron 2001, 20, 97.
(137) Na, Y.; Wang, M.; Pan, J.; Zhang, P.; Akermark, B.; Sun, L. Inorg. Chem. 2008, 47, 2805.
(138) Zhang, P.; Wang, M.; Na, Y.; Li, X.; Jiang, Y.; Sun, L. Dalton Trans. 2010, 39, 1204.
(139) Cabeza, J. A.; Martínez-García, M.; Riera, V.; Ardura, D.; García-Granada, S. Organometal. 1998, 17, 1471.
(140) Justice, A. K.; Linck, R. C.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc. 2004, 126, 13214.
(141) Cabeza, J. A.; Martinez-Garcia, M. A.; Riera, V.; Ardura, D.; Garcia-Granda, S.; Vander Maelen, J. F. Eur. J. Inorg. Chem. 1999, 1133.
(142) Gouterman, M. J. Mol. Spectrosc. 1961, 6, 138.
(143) Inamura, I.; Uchida, K. Bull. Chem. Soc. Jpn. 1991, 64, 2005.
(144) Lauceri, R.; Raudino, A.; Scolaro, L. M.; Micali, N.; Purrello, R. J. Am. Chem. Soc. 2002, 124, 894.
(145) Maiti, N. C.; Mazumdar, S.; Periasamy, N. J. Phys. Chem. B 1998, 102, 1528.
(146) Mishra, A.; Behera, R. K.; Behera, P. K.; Mishra, B. K.; Behera, G. B. Chem. Rev. 2000, 100, 1973.
(147) Akins, D. L.; Zhu, H.-R.; Guo, C. J. Phys. Chem. 1996, 100, 5420.
(148) Henry, E. R.; Eaton, W. A.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. U. S. A. 1986, 83, 8982.
(149) Miller, R. J. D. Acc. Chem. Res. 1994, 27, 145.
(150) Mizutani, Y.; Kitagawa, T. Science 1997, 278, 443.
(151) Kitagawa, T.; Haruta, N.; Mizutani, Y. Biopolymers 2002, 67, 207.
(152) Lakowicz, J. R.; Gratton, E.; Cherek, H.; Maliwal, B. P.; Laczko, G. J. Biol. Chem. 1984, 259, 10967.
(153) Lim, M.; Jackson, T. A.; Anfinrud, P. A. J. Phys. Chem. 1996, 100, 12043.
(154) Lim, M.; Jackson, T. A.; Anfinrud, P. A. Timeresolved infrared studies of ligand dynamics in heme proteins. In Ultrafast Infrared and Raman Spectroscopy; Marcel Dekker: New York, 2001.
(155) Wang, W.; Ye, X.; Demidov, A. A.; Rosca, F.; Sjodin, T.; Cao, W. X.; Sheeran, M.; Champion, P. M. J. Phys. Chem. B 2000, 104, 10789.
(156) Ye, X.; Demidov, A.; Rosca, F.; Wang, W.; Kumar, A.; Ionascu, D.; Zhu, L.; Barrick, D.; Wharton, D.; Champion, P. M. J. Phys. Chem. A 2003, 107, 8156.
(157) Sagnella, D. E.; Straub, J. E. J. Phys. Chem. B 2001, 105, 7057.
(158) Bu, L.; Straub, J. E. J. Phys. Chem. B 2003, 107, 10634.
(159) Bu, L.; Straub, J. E. J. Phys. Chem. B 2003, 107, 12339.
(160) Barboy, N.; Feitelson, J. Biochemistry 1987, 26, 3240.
(161) Feitelson, J. S.; Sinha, A. M.; Coco, E. A. J. Nat. Prod. 1986, 49, 988.
(162) Albani, J.; Alpert, B. Eur. J. Biochem. 1987, 162, 175.
(163) Ilari, A.; Boffi, A.; Chiancone, E. Arch. Biochem. Biophys. 1995, 316, 378.
(164) Aono, S.; Nemoto, S.; Ohtaka, A.; Okura, I. J. Mol. Catal. A: Chem. 1995, 95, 193.
(165) Polm, M. W.; Schaafsma, T. J. Biophys. J. 1997, 72, 373.
(166) Scolaro, L. M.; Castriciano, M.; Romeo, A.; Patane, S.; Cefali, E.; Allegrini, M. J. Phys. Chem. B 2002, 106.
(167) Teale, F. W. Biochim Biophys Acta 1959, 35, 543.
(168) Axup, A. W.; Albin, M.; Mayo, S. L.; Crutchley, R. J.; Gray, H. B. J. Am. Chem. Soc. 1988, 110, 435.
(169) Chen, S. M.; Tseng, C. C. J. Electroanal. Chem. 2005, 575, 147.
(170) Nassar, A.-E. F.; Bobbitt, J. M.; Stuart, J. D.; Rusling, J. F. J. Am. Chem. Soc. 1995, 117, 10986.
(171) Peterson, M. G.; James, F. R. Electrochem. Commun. 2006, 8, 455.
(172) Yu, H.; Baskin, J. S.; Zewail, A. H. J. Phys. Chem. A 2002, 106, 9845.
(173) Luo, L. Y.; Lo, C. F.; Lin, C. Y.; Chang, I. J.; Diau, E. W. G. J. Phys. Chem. B 2006, 110, 410.
(174) Shosheva, A. C.; Christova, P. K.; Atanasov, B. P. Biochim. Biophys. Acta. 1988, 957, 202.
(175) Maiti, N. C.; Ravikanth, M.; Mazumdar, S.; Periasamy, N. J. Phys. Chem. 1995, 99, 17192.
(176) Castriciano, M. A.; Romeo, A.; Villari, V.; Angelini, N.; Micali, N.; Scolaro, L. M. J. Phys. Chem. B 2005, 109, 12086.
(177) Nu¨esch, F.; Grätzel, M. Chem. Phys. 1995, 193, 1.
(178) Ribo, J. M.; Crusats, J.; Farrera, J. A.; Valero, M. L. Chem. Commun. 1994, 33, 681.
(179) Choi, M. Y.; Pollard, J. A.; Webb, M. A.; McHale, J. L. J. Am. Chem. Soc. 2003, 125, 810.
(180) Okada, S.; Segawa, H. J. Am. Chem. Soc. 2003, 125, 2792.
(181) Li, X.; Li, D.; Han, M.; Chen, Z.; Zou, G. Colloids Surf. A. Physicochem. Eng. Aspects 2005, 256, 151.
(182) Udal'tsov, A. V.; Tosaka, M.; Kaupp, G. J. Mol. Struct. 2003, 660, 15.
(183) Sugden, J. K. Biotech. Histochem. 2004, 79, 71.
(184) Greenfield, N. J. Anal. Biochem. 1996, 235, 1.
(185) Brahms, S.; Brahms, J. J. Mol. Biol. 1980, 138, 149.
(186) Woody, R. W. Adv. Biophys. Chem. 1992, 2, 37.
(187) Sreerama, N.; Woody, R. W. Anal. Biochem. 1993, 209, 32.
(188) Ribeiro, Jr. E. A.; Regis, W. C. B.; Tasic, L.; Ramos, C. H. I. Protein Expr. Purif. 2003, 28, 202.
(189) Li, Q. W.; Luo, G.; Feng, J. Electroanal. 2001, 13, 359.
(190) Janacek, K.; Kotyk, A.; Koryta, J. Biophys. Chemistry of Membrane Function; Wiley-VCH: Chichester, 1982.
(191) Cevc, G.; March, D. Phospholipid Bilayers; Wiley-VCH: New York, 1987.
(192) Rusling, J. F. Acc. Chem. Res. 1998, 31, 363.
(193) Boussaad, S.; Tao, N. J. J. Am. Chem. Soc. 1999, 121, 4510.
(194) Kunitake, T.; Sakamoto, T. Chem. Lett. 1979, 1059.
(195) Okahata, Y.; Shimizu, A. Langmuir 1989, 5, 954.
(196) Lee, A. G. Biochim. Biophys. Acta. 1977, 472, 237.
(197) Nagle, J. F. Annu. Rev. Phys. Chem. 1980, 31, 157.
(198) Maiti, N. C.; Mazumdar, S.; Periasamy, N. J. Phys. Chem. 1995, 99, 10708.
(199) Harriman, A. J. Chem. Soc. Farady Trans. I 1980, 76, 1978.
(200) Luo, L.; Chang, C. H.; Chen, Y. C.; Wu, T. K.; Diau, E. W. J. Phys. Chem. B 2007, 111, 7656.
(201) Luo, L.; Lin, C. J.; Tsai, C. Y.; Wu, H. P.; Li, L. L.; Lo, C. F.; Lin, C. Y.; Diau, E. W. Phys. Chem. Chem. Phys. 2010, 12, 1064.
(202) Feitelson, J.; Barboy, N. J. Phys. Chem. 1986, 90, 271.
(203) Valeur, B. Molecular Fluorescence: Principles and Applications; Wiley-VCH: New York USA, 2002.
(204) Lakowicz, J. R. Principles of Fluorescence Spectroscopy; 2nd Edn. ed.; Kluwer Academic/Plenum Publishers: New York USA, 1999.
(205) Maiti, N. C.; Mazumdar, S.; Periasamy, N. J. Phys. Chem. 1995, 99, 10708.
(206) Gurzadyan, G. G.; Tran-Thi, T. H.; Gustavsson, T. J. Chem. Phys. 1998, 108, 385.
(207) Akimoto, S.; Yamazaki, T.; Yamazaki, I.; Osuka, A. Chem. Phys. Lett. 1999, 309, 177.
(208) Mataga, N.; Shibata, Y.; Chosrowjan, H.; Yoshida, N.; Osuka, A. J. Phys. Chem. B 2000, 104, 4001.
(209) Ribeiro, E. A., Jr.; Regis, W. C.; Tasic, L.; Ramos, C. H. Protein Expr. Purif. 2003, 28, 202.
(210) Fandrich, M.; Forge, V.; Buder, K.; Kittler, M.; Dobson, C. M.; Diekmann, S. Proc. Nat.l Acad. Sci. U. S. A. 2003, 100, 15463.
(211) Chang, C. W.; Chang, C. H.; Lu, H. P.; Wu, T. K.; Diau, E. W. J. Nanosci. Nanotechnol. 2009, 9, 1688.
(212) Long, Y. T.; Sutherland, T. C.; Kraatz, H. B.; Lee, J. S. Chem. Commun.2004, 2032.
(213) Komatsu, T.; Wang, R. M.; Zunszain, P. A.; Curry, S.; Tsuchida, E. J. Am. Chem. Soc. 2006, 128, 16297.
(214) Jensen, M. A.; Elving, P. J. Biochim. Biophys. Acta. 1984, 764, 310.
(215) Burnett, R. W.; Underwood, A. L. Biochemistry 1968, 7, 3328.
(216) Matsui, T.; Ozaki, S.-i.; Watanabe, Y. J. Am. Chem. Soc. 1999, 121, 9952.
(217) Quillin, M. L.; Li, T.; Olson, J. S.; Phillips, G. N., Jr.; Dou, Y.; Ikeda-Saito, M.; Regan, R.; Carlson, M.; Gibson, Q. H.; Li, H.; et al. J. Mol. Biol. 1995, 245, 416.
(218) Hanson, A. D.; Brown, A. H. Biochem. Genet. 1984, 22, 495.
(219) Margoliash, E.; Frohwirt, N. Biochem. J. 1959, 71, 570.
(220) Brady, R. S.; Flatmark, T. J. Mol. Biol. 1971, 57, 529.
(221) Du, P.; Schneider, J.; Jarosz, P.; Zhang, J.; Brennessel, W. W.; Eisenberg, R. J. Phys. Chem. B 2007, 111, 6887.
(222) Terasaki, N.; Otsuka, K.; Akiyama, T.; Yamada, S. Jpn. J. Appl. Phys. 2004, 43, 2372.
(223) Bertolotti, S. G.; Previtali, C. M.; Rufs, A. M.; Encinas, M. V. Macromolecules 1999, 32, 2920.
(224) Orellana, B.; Rufs, A. M.; Encinas, M. V.; Previtali, C. M.; Bertolotti, S. Macromolecules 1999, 32, 6570.
(225) Villegas, L.; Encinas, M. V.; Rufs, A. M.; Bueno, C.; Bertolotti, S.; Previtali, C. M. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 4074
(226) Houlding, V. H.; Kalyanasundaram, K.; Grätzel, M.; Milgrom, L. R. J. Phys. Chem. 1983, 87, 3175.
(227) Kalyanasundaram, K.; Neumann-Spallart, M. J. Phys. Chem. 1982, 86, 5163.
(228) Kalyanasundaram, K.; Grätzel, M. Helv. Chim. Acta 1980, 63, 478.
(229) Jensen, M. A.; Elving, P. J. Biochim. Biophys. Acta. 1984, 764, 310.
(230) Avigliano, L.; Carelli, V.; Casini, A.; Finazzi-Agrò, A.; Liberatore, F. Biochem. J. 1985, 226, 391.
(231) Avigliano, L.; Carelli, V.; Casini, A.; Finazzi-Agro, A.; Liberatore, F.; Rossi, A. Biochem. J. 1986, 237, 919.
(232) Burnett, R. W.; Underwood, A. L. Biochemistry 1968, 7, 3328.
(233) Koike, H.; Katoh, S. Plant Cell Physiol. 1979, 20, 1157.
(234) Gebicki, J.; Marcinek, A.; Zielonka, J. J. Acc. Chem. Res. 2004, 37, 379.
(235) Moiroux, J.; Elving, P. J. J. Am. Chem. Soc. 1980, 102, 6533.
(236) Carlson, B. W.; Miller, L. L.; Neta, P.; Grodkowski, J. J. Am. Chem. Soc. 1984, 106, 7233.
(237) Fukuzumi, S. Pure Appl. Chem. 2007, 79, 981.
(238) Himeshima, N.; Amao, Y. Biotechnol. Lett. 2002, 24, 1935.
(239) Amao, Y.; Hirakawa, T.; Himeshima, N. Catal. Commun. 2008, 9, 131.
(240) Hambourger, M.; Brune, A.; Gust, D.; Moore, A. L.; Moore, T. A. Photochem. Photobiol. 2005, 81, 7081.
(241) Hambourger, M.; Gervaldo, M.; Svedruzic, D.; King, P. W.; Gust, D.; Ghirardi, M.; Moore, A. L.; Moore, T. A. J. Am. Chem. Soc. 2008, 130, 2015.
(242) Osawa, Y.; Korzekwa, K. Proc. Nad. Acad. Sci. 1991, 88, 7081.
(243) Afanasyeva, M. S.; Purtov, P. A.; Taraban, M. B.; Leshina, T. V.; Grissomb, C. B. Russ.Chem.Bull. 2006, 55.
(244) Sakamoto, S.; Ito, A.; Kudo, K.; Yoshikawa, S. Chem. Eur. J. 2004, 10, 3717.
(245) de la Garza, L.; Jeong, G.; Liddell, P. A.; Sotomura, T.; Moore, T. A.; Moore, A. L.; Gust, D. J. Phys. Chem. B 2003, 107, 10252.
(246) Brune, A.; Jeong, G.; Liddell, P. A.; Sotomura, T.; Moore, T. A.; Moore, A. L.; Gust, D. Langmuir 2004, 20, 8366.
(247) Hambourger, M.; Brune, A.; Gust, D.; Moore, A. L.; Moore, T. A. Photochem. Photobiol. 2005, 81, 1015.
(248) Wu, J. T.; Wu, L. H.; Knight, J. A. Clin. Chem. 1986, 32/2, 314.
(249) Conn, E. E.; Stumpf, P. K.; Bruening, G.; Doi, R. H. Outlines of Biochemistry 5/E; Wiley: New York, 1987.
(250) Gorton, L.; Persson, B.; Hale, P. D.; Boguslavsky, L. I.; Karan, H. I.; Lee, H. S.; Skotheim, T. A.; Lan, H. L.; Okamoto, Y. In Biosensors and Chemical Sensors, ACS Symposium Series 487 Atlanta, 1992.
(251) Rover Jr., L.; Fernandes, J. C. B.; Neto, G. O.; Kubota, L. T.; Katekawa, E.; Serrano, S. H. P. Anal. biochem. 1998, 260, 50.
(252) Carelli, V.; Liberatore, F.; Casini, A.; Mondelli, R.; Arnone, A.; Carelli, I.; Rotilio, G.; Mavelli, I. Bioorg. Chem. 1980, 9, 342.
(253) Shelnutt, J. A.; Trudell, D. E. American Chemical Society, "Novel Materials in Heterogeneous Catalysis", 1990; Vol. 437.
(254) Maldotti, A.; Andreotti, L.; Molinari, A.; Carassiti, V. J. Biol. Inorg. Chem. 1999, 4, 154.
(255) Fukuzumi, S.; Ishikawa, M.; Tanaka, T. J. Chem. Soc. Perkin Trans. II 1989, 1037.
(256) 歐書涵, Light-Chemical Energy Conversion Study of Reconstituted Zinc-Protoporphyrin/Zinc-Carboxyphenylethynyl Porphyrin Myoglobin Mutants, 交通大學碩士論文2009.
(257) Case, D. A.; Karplus, M. J. Mol. Biol. 1979, 132, 343.
(258) Kottalam, J.; Case, D. A. J. Am. Chem. Soc. 1988, 110, 7690.
(259) Doney, S. C.; Schimel, D. S. Annu. Rev. Environ. Resour. 2007, 32, 31.
(260) Chen, S.-N.; Deb, S. K.; Witzke, H. In U.S.Patent 1978; Vol. 4080488.
(261) Grätzel, M. Inorg. Chem. 2005, 44, 6841.
(262) Nazeeruddin, M. K.; Humphry-Baker, R.; Grätzel, M.; Murrer, B. A. Chem. Commun. 1998, 719.
(263) He, J.; Hagfeldt, A.; Lindquist, S.-E. Langmuir 2001, 17, 2743.
(264) Ramakrishna, G.; Ghosh, H. N. J. Phys. Chem. B 2001, 105, 7000.
(265) Ramakrishna, G.; Das, A.; Ghosh, H. N. Langmuir 2004, 20, 1430.
(266) Ghosh, H. N. J. Phys. Chem. B 1999, 103, 10382.
(267) Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003, 107, 597.
(268) Wongcharee, K.; Meeyoo, V.; Chavadej, S. Sol. Energy Mater. Sol. Cells 2007, 91, 566.
(269) Yagishita, T.; Sawayama, S.; Tsukahara, K.; Ogi, T. J. Biosci. Bioeng. 1999, 88, 210.
(270) Das, R.; Kiley, P. J.; Segal, M.; Norville, J.; Yu, A. A.; Wang, L.; Trammell, S.; Reddick, L. E.; Kumar, R.; Zhang, S.; Stellacci, F.; Lebedev, N.; Schnur, J.; Bruce, B. D.; Baldo, M. A. Nano Lett. 2004, 4, 1079.
(271) Ho, D.; Chu, B.; Lee, H.; Montemagno, C. D. Nanotech. 2004, 16, 3120.
(272) Miyasaka, T.; Koyama, K.; Itoh, I. Science 1992, 255, 342.
(273) Tsujimura, S.; Wadano, A.; Kano, K.; T., I. Enzyme Microb. Technol. 2001, 29, 225.
(274) Lam, K. B.; Johnson, E. A.; Chiao, M.; Lin, L. J. Microelectromech. Syst. 2006, 15, 1243.
(275) Lu, Y.; Yuan, M.; Liu, Y.; Tu, B.; Xu, C.; Liu, B.; Zhan, D.; Kong, J. Langmuir 2005, 21, 4071.
(276) Wang, Q.; Campbell, W. M.; Bonfantani, E. E.; Jolley, K. W.; Officer, D. L.; Walsh, P. J.; Gordon, K.; Humphry-Baker, R.; Nazeeruddin, M. K.; Grätzel, M. J. Phys. Chem. B 2005, 109, 15397.
(277) Reddy, P. Y.; Giribabu, L.; Lyness, C.; Snaith, H. J.; Vijaykumar, C.; Chandrasekharam, M.; Lakshmikantam, M.; Yum, J. H.; Kalyanasundaram, K.; Grätzel, M.; Nazeeruddin, M. K. Angew. Chem. Int. Ed. Engl. 2007, 46, 373.
(278) Rochford, J.; Chu, D.; Hagfeldt, A.; Galoppini, E. J. Am. Chem. Soc. 2007, 129, 4655.
(279) Gadde, S.; Islam, D. M. S.; Wijesinghe, C. A.; Subbaiyan, N. K.; Zandler, M. E.; Araki, Y.; Ito, O.; D'Souza, F. J. Phys. Chem. C 2007, 111, 12500.
(280) Campbell, W. M.; Jolley, K. W.; Wagner, P.; Wagner, K.; Walsh, P. J.; Gordon, K. C.; Schmidt-Mende, L.; Nazeeruddin, M. K.; Wang, Q.; Grätzel, M.; Officer, D. L. J. Phys. Chem. C 2007, 111, 11760.
(281) Topoglidis, E.; Campbell, C. J.; Cass, A. E. G.; Durrant, J. R. Electroanal. 2006, 18, 882.
(282) Topoglidis, E.; Lutz, T.; Willis, R. L.; Barnett, C. J.; Cass, A. E.; Durrant, J. R. Faraday Discuss 2000, 35.
(283) Topoglidis, E.; Campbell, C. J.; Cass, A. E. G.; Durrant, J. R. Electroanal. 2005, 17, 1035
(284) Zahavy, E.; Willner, I. J. Am. Chem. Soc. 1996, 118, 12499.
(285) Tai, W. P.; Inoue, K. Mat. Lett. 2003, 57, 1508.
(286) Ito, S.; Matsui, H.; Okada, K.; Kusano, S.; Kitamura, T.; Wada, Y.; Yanagida, S. Sol. Energy Mater. Sol. Cells 2004, 84, 125 —133
(287) Fleming, G. R.; Kinght, A. W. E.; Morris, J. M.; Morrison, R. J. S.; Robinson, G. W. J. Am. Chem. Soc. 1977, 99, 4306.
(288) Bernard, V. Molecular Fluorescence: Principles and Applications; Wiley-VCH: Weinheim, Germany, 2002.
(289) Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M. K.; Liska, P.; Pe'chy, P. T.; Grätzel, M. Prog. Photovolt: Res. Appl. 2007, 15, 603.
(290) Wang, P.; Zakeeruddin, S. M.; Comte, P.; Charvet, R.; Humphry-Baker, R.; Grätzel, M. J. Phys. Chem. B 2003, 107, 14336.
(291) Nazeeruddin, M. K.; Humphry-Baker, R.; Officer, D. L.; Campbell, W. M.; Burrell, A. K.; Grätzel, M. Langmuir 2004, 20, 6514.
(292) Moliton, A.; Nunzi, J.-M. Polym. Int. 2006, 55, 583.
(293) Murayama, M.; Mori, T. Thin Solid Films 2006, 509, 123.
(294) Han, L.; Koide, N.; Chiba, Y.; Mitate, T. Appl. Phys. Lett. 2004, 84, 2433.
(295) Han, L.; Koide, N.; Chiba, Y.; Islam, A.; Mitate, T. C. R. Chimie 2006, 9, 645.
(296) Kalyanasundaram, K.; Grätzel, M. Helv. Chim. Acta 1980, 63, 478.
(297) Kalyanasundaram, K. Coord. Chem. Rev. 1982, 46, 159.
(298) Harriman, A.; Porter, G.; Richoux, M.-C. J. Chem. Soc., Faraday Trans. 2 1981, 77, 833.
(299) Richoux, M. C.; Harriman, A. J. Chem. Soc., Faraday Trans. 1 1982, 78, 1873.
(300) Harriman, A.; Porter, G.; Richoux, M.-C. Coord. Chem. Rev. 1982, 44, 83.
(301) Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757.
(302) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025.
(303) Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J. Chem. Rev. 2005, 104, 3893.
(304) Gloaguen, F.; Lawrence, J. D.; Schmidt, M.; Wilson, S. R.; Rauchfuss, T. B. J. Am. Chem. Soc. 2001, 123, 12518.
(305) Gloaguen, F.; Lawrence, J. D.; Rauchfuss, T. B. J. Am. Chem. Soc. 2001, 123, 9476.
(306) Boddien, A.; Loges, B.; Gartner, F.; Torborg, C.; Fumino, K.; Junge, H.; Ludwig, R.; Beller, M. J. Am. Chem. Soc. 2010, 132, 8924.
(307) Enthaler, S. ChemSusChem 2008, 1, 801.
(308) Joo, F. ChemSusChem 2008, 1, 805.
(309) Ntaikou, I.; Gavala, H. N.; Kornaros, M.; Lyberatos, G. Int. J. Hydrogen Energy 2008, 33, 1153.
(310) Haszeldine, R. S. Science 2009, 325, 1647.
(311) Greco, C.; Bruschi, M.; De Gioia, L.; Ryde, U. Inorg. Chem. 2007, 46, 5911.
(312) Moloy, K. G.; Petersen, J. L. J. Am. Chem. Soc. 1995, 117, 7696.
(313) Winter, A.; Zsolnai, L.; Huttner, G. Z. Naturforsch. 1982, 37b, 1430.
(314) Blaise, C.; Malle, G.; Philippe, M. Washington, DC, 2005; Vol. US2005/208007 A1.
(315) Volkers, P. I.; Rauchfuss, T. B.; Wilson, S. R. Eur. J. Inorg. Chem. 2006, 4793.
(316) Shelimov, B.; Lambert, J. F.; Che, M.; Didillon, B. J. Cataly. 1999, 185, 462.
(317) Darensbourg, M. Y.; Chong, D. S.; Georgakaki, I. P.; Mejia-Rodriguez, R.; Samabria-Chinchilla, J.; Soriaga, M. P. Dalton Trans. 2003, 4158.
(318) Capon, J. F.; Ezzaher, S.; Gloaguen, F.; Petillon, F. Y.; Schollhammer, P.; Talarmin, J.; Davin, T. J.; McGrady, J. E.; Muir, K. W. New J. Chem. 2007, 31, 2052.
(319) Liu, T.; Li, B.; Singleton, M. L.; Hall, M. B.; Darensbourg, M. Y. J. Am. Chem. Soc. 2009, 131, 8296.
(320) Borg, S. J.; Behrsing, T.; Best, S. P.; Razavet, M.; Liu, X.; Pickett, C. J. J. Am. Chem. Soc. 2004, 126, 16988.
(321) Capon, J. F.; Gloaguen, F.; Schollhammer, P.; Talarmin, J. Coord. Chem. Rev. 2005, 249, 1664.
(322) Chong, D.; Georgakaki, I. P.; Mejia-Rodriguez, R.; Sanabria-Chinchilla, J.; Soriaga, M. P.; Darensbourg, M. Y. Dalton Trans. 2003, 4158.
(323) Mejia-Rodriguez, R.; Chong, D.; Reibenspies, J. H.; Soriaga, M. P.; Darensbourg, M. Y. J. Am. Chem. Soc. 2004, 126, 12004.
(324) Sun, L.; Åkermark, B.; Ott, S. Coord. Chem. Rev. 2005, 249, 1653.
(325) Loges, B.; Boddien, A.; Junge, H.; Noyes, J. R.; Baumann, W.; Beller, M. Chem. Commun.2009, 4185.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊