跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 08:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林怡萍
研究生(外文):Lin, Yi-Ping
論文名稱:利用不同材料與結構提升單接面非晶矽薄膜太陽能電池效率之研究
論文名稱(外文):Investigation of Various Methods for Enhancing the Performance of a-Si:H Single-Junction Thin-Film Solar Cells
指導教授:蔡娟娟蔡娟娟引用關係
指導教授(外文):Tsai, Chuang-Chuang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:85
中文關鍵詞:電漿輔助化學氣相沉積薄膜太陽能電池氫化非晶矽氮化矽非晶碳化矽微晶氧化矽背反射層抗反射層
外文關鍵詞:plasma-enhanced chemical vapor depositionthin-film solar cellhydrogenated amorphous siliconamorphous silicon nitrideamorphous silicon carbidemicrocrystalline silicon oxideback reflectorantireflection layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用射頻電漿輔助化學氣相沉積系統來沉積不同的材料與結構,來增加太陽電池吸收層的吸收,以進一步提昇單接面非晶矽薄膜太陽能電池之效率。首先,沉積低折射率非晶氮化矽薄膜,並將非晶氮化矽薄膜沉積在玻璃基板與透明導電薄膜間當作抗反射層,比較固定折射率與漸變折射率的非晶氮化矽在光學性質,並找出最佳化的厚度,以增加太陽電池的效率。藉由非晶氮化矽反射膜的添加,使單接面非晶矽薄膜太陽能電池效率提升4.8%。接著,比較不同能隙與導電性的p型氫化非晶碳化矽薄膜所製作的太陽能電池。進一步研究結合p型微晶矽與非晶碳化矽結構以及p型碳化矽與碳化矽結構對薄膜太陽能電池效能上的影響。使用雙層p型碳化矽結構可進一步提升效率從9.1%到9.25%。最後,使用n型微晶氧化矽取代原本的n型非晶矽,以及取代n型非晶矽與透明氧化導電層作為背反射結構。藉由光學反射的增加提升光電轉換效率。本研究最佳之非晶矽薄膜太陽能電池轉換效率已提升至10.13%,其中開路電壓,短路電流密度,填充因子分別為0.9 V,15.27 mA/cm2以及73.75%。
In this study, hydrogenated amorphous silicon thin-film solar cell was prepared by plasma-enhanced chemical vapor deposition (PECVD) system at 27.12 MHz. In order to improve the cell performance, different materials and structures were prepared to enhance the light absorption in the absorber active layer. First, the lower- refractive-index hydrogenated amorphous silicon nitride (a-SiNx:H) was deposited between the glass substrate and the transparent conductive oxide (TCO) layer to serve as the antireflection (AR) coatings. The performance of the devices having a-SiNx:H with the constant refractive index was compared with the devices having a-SiNx:H with the graded refractive index. The thickness of a-SiNx:H was also adjusted to optimize the performance of solar cells. By inserting 80 nm a-SiNx:H AR coating, a-Si:H single-junction cell had a relative increase of 4.8% in efficiency. Second, devices with different p-type window layers was compared. Hydrogenated microcrystalline silicon (µc-Si:H)/hydrogenated amorphous silicon cabide (a-SiCx:H) and a-SiCx:H/a-SiCx:H double p-layer structures were utilized in devices. The combination of p-layers with better optical and electrical properties was investigated to optimize the cell performance. The efficiency of a-Si:H cells having a-SiCx:H/a-SiCx:H window structure was improved from 9.1% to 9.25%. Finally, the n-doped microcrystalline silicon oxide (µc-SiOx:H(n)) was served as n-layer in solar cells. Besides, µc-SiOx:H(n)/Ag structure was used to replace a-Si:H(n)/TCO/Ag as back reflector (BR) structure. The increase in the optical reflection by the oxide layers on the back side improved the cell performance. The best conversion efficiency in this study was 10.13% with Voc=900.1 mV, Jsc=15.27 mA/cm2, FF=73.75%.
中文摘要 I
Abstract II
Acknowledgements IV
Content V
List of Tables VIII
List of Figures IX
Chapter 1 INTRODUCTION 1
1.1 Global Warming and Energy Problem 1
1.2 Introduction to PV Technology 2
1.2.1 Current Development of PV Technology 2
1.2.2 Thin-Film Solar Cell Technology 4
1.2.3 Si-Based Thin-film Solar Cell 5
1.3 Motivations 7
Chapter 2 LITURATURE REVIEW 8
2.1 Introduction and Basic Theory of Solar Cells 8
2.2 Carrier Collection Mechanism and p-i-n Structure 10
2.3 Introduction to Hydrogenated Amorphous Silicon 12
2.4 Doping of a-Si:H 14
2.5 Introduction to µc-Si:H 15
2.6 Hydrogenated Amorphous Silicon Nitride Antireflection Coating 16
2.7 Hydrogenated Amorphous and Microcrystalline Silicon Oxide 17
2.8 Stabler-Wronski Effect - Light Induced Degradation 17
2.9 Back Reflector 18
2.10 Plasma-Enhanced Chemical Vapor Deposition 18
Chapter 3 EXPERIMENT DETAILS 20
3.1 Experimental Introduction 20
3.2 RF-PECVD System 20
3.3 AM 1.5 Light Source 21
3.4 Material Analysis Equipment 23
3.4.1 Raman Spectroscopy 23
3.4.2 J-V and Cell Efficiency Measurements 24
3.4.3 Measurement of Quantum Efficiency 27
3.4.4 Measurement of Elemental Composition 28
3.5 Determination of Optical Bandgap 29
Chapter 4 RESULTS AND DISCUSSION 31
4.1 Study of Low Refractive-Index a-SiNx:H as Performance Enhancement Layer for a-Si:H Single-Junction Solar Cells. 31
4.2 Effect of Different p-type Window Layers on the Performance of a-Si:H Solar Cells 43
4.2.1 Film Property of a-SiCx:H(p) and Cell Performance 43
4.2.2 Effect of μc-Si:H(p) as the p+ layer in Double p-layers on the Performance of a-Si:H Solar Cells 47
4.2.3 Effect on the Performance of a-Si:H Solar Cells Applying a-SiCx:H(p+)/a-SiCx:H(p-) Double p-layers. 53
4.3 Hydrogenated Microcrystalline Silicon Oxide n-layer 58
4.3.1 Film Property of Hydrogenated Microcrystalline Silicon Oxide n-layer 58
4.3.2 Development of µc-SiOx:H(n) as an Alternative to a-Si:H(n) in p-i-n Cell Structure 61
4.3.3 Development of µc-SiOx:H as an Alternative to a-Si:H(n) and Back TCO in p-i-n Cell Structure 70
Chapter 5 CONCLUSIONS 76
Chapter 6 FUTURE WORK 78
REFERENCES 79

[1] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, "Solar cell efficiency tables (version 37)," Progress in Photovoltaics: Research and Applications, vol. 19, p. 84, 2011.
[2] K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda, T. Suezaki, M. Ichikawa, Y. Koi, M. Goto, and T. Meguro, "A thin-film silicon solar cell and module," Progress in Photovoltaics: Research and Applications, vol. 13, p. 489, 2005.
[3] A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, "Thin-film silicon solar cell technology," Progress in photovoltaics, vol. 12, p. 113, 2004.
[4] D. Staebler and C. Wronski, "Reversible conductivity changes in discharge produced amorphous Si," Applied Physics Letters, vol. 31, p. 292, 1977.
[5] S. O. Kasap, Optoelectronics and photonics: Prentice Hall, 2001.
[6] T. Roschek, "Microcrystalline silicon solar cells prepared by 13.56 MHz PECVD," 2003.
[7] R. Street, Hydrogenated amorphous silicon: Cambridge University Press, 1991.
[8] J. Poortmans and V. Arkhipov, Thin Film Solar Cells Fabrication, Characterization and Applications: John Wiley & Sons Ltd, 2006.
[9] S. Guha, K. Narasimhan, and S. Pietruszko, "On light induced effect in amorphous hydrogenated silicon," Journal of Applied Physics, vol. 52, p. 859, 1981.
[10] S. Sriraman, S. Agarwal, E. Aydil, and D. Maroudas, "Mechanism of hydrogen-induced crystallization of amorphous silicon," Nature, vol. 418, p. 62, 2002.
[11] K. Nomoto, Y. Urano, J. Guizot, G. Ganguly, and A. Matsuda, "Role of hydrogen atoms in the formation process of hydrogenated microcrystalline silicon," Japanese Journal of Applied Physics, vol. 29, p. L1372, 1990.
[12] M. Katiyar and J. Abelson, "Investigation of hydrogen induced phase transition from a-Si: H to µc-Si: H using real time infrared spectroscopy," Materials Science and Engineering A, vol. 304, p. 349, 2001.
[13] N. Layadi, P. Roca i Cabarrocas, B. Drevillon, and I. Solomon, "Real-time spectroscopic ellipsometry study of the growth of amorphous and microcrystalline silicon thin films prepared by alternating silicon deposition and hydrogen plasma treatment," Physical Review B, vol. 52, p. 5136, 1995.
[14] J. Bertomeu, "The role of hydrogen in the formation of microcrystalline silicon," Materials Science and Engineering: B, vol. 69, p. 559, 2000.
[15] C. Tsai, G. Anderson, R. Thompson, and B. Wacker, "Control of silicon network structure in plasma deposition," Journal of Non-Crystalline Solids, vol. 114, p. 151, 1989.
[16] I. Kaiser, N. Nickel, W. Fuhs, and W. Pilz, "Hydrogen-mediated structural changes of amorphous and microcrystalline silicon," Physical Review B, vol. 58, p. 1718, 1998.
[17] J. Boland and G. Parsons, "Bond selectivity in silicon film growth," Science, vol. 256, p. 1304, 1992.
[18] N. Nickel and W. Jackson, "Hydrogen-mediated creation and annihilation of strain in amorphous silicon," Physical Review B, vol. 51, p. 4872, 1995.
[19] H. Shirai, J. Hanna, and I. Shimizu, "Role of Atomic Hydrogen During Growth of Hydrogenated Amorphous Silicon in the "Chemical Annealing"," Japanese Journal of Applied Physics, vol. 30, 1991.
[20] W. Spear and P. Comber, "Electronic properties of substitutionally doped amorphous Si and Ge," Philosophical Magazine, vol. 33, p. 935, 1976.
[21] C. Wronski and R. Collins, "Phase engineering of a-Si: H solar cells for optimized performance," Solar Energy, vol. 77, p. 877, 2004.
[22] J. Zhao and M. A. Green, "Optimized antireflection coatings for high-efficiency silicon solar cells," Electron Devices, IEEE Transactions on, vol. 38, p. 1925, 1991.
[23] Y. Kuo, "Etch mechanism in the low refractive index silicon nitride plasma enhanced chemical vapor deposition process," Applied physics letters, vol. 63, p. 144, 1993.
[24] T. Lauinger, J. Moschner, A. G. Aberle, and R. Hezel, "Optimization and characterization of remote plasma-enhanced chemical vapor deposition silicon nitride for the passivation of p-type crystalline silicon surfaces," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 16, p. 530, 1998.
[25] R. Hezel and R. Schorner, "Plasma Si nitride-promising dielectric to achieve high quality silicon MIS/IL solar cells," Journal of Applied Physics, vol. 52, p. 3076, 1981.
[26] S. Winderbaum, F. Yun, and O. Reinhold, "Application of plasma enhanced chemical vapor deposition silicon nitride as a double layer antireflection coating and passivation layer for polysilicon solar cells," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 15, p. 1020, 1997.
[27] Z. Chen, P. Sana, J. Salami, and A. Rohatgi, "A novel and effective PECVD SiO2/SiN antireflection coating for Si solar cells," Electron Devices, IEEE Transactions on, vol. 40, p. 1161, 1993.
[28] K. C. Sahoo, Y. Li, and E. Y. Chang, "Numerical calculation of the reflectance of sub-wavelength structures on silicon nitride for solar cell application," Computer Physics Communications, vol. 180, p. 1721, 2009.
[29] K. Chandra Sahoo, Y. Li, and E. Y. Chang, "Shape Effect of Silicon Nitride Subwavelength Structure on Reflectance for Silicon Solar Cells," Electron Devices, IEEE Transactions on, vol. 57, p. 2427, 2010.
[30] Y. Tawada, K. Tsuge, M. Kondo, H. Okamoto, and Y. Hamakawa, "Properties and structure of a-SiC:H for high efficiency a-Si solar cell," Journal of Applied Physics, vol. 53, p. 5273, 1982.
[31] K. Haga, K. Yamamoto, M. Kumano, and H. Watanabe, "Wide optical-gap a-SiO:H films prepared from SiH4-CO2 gas mixture," Japanese Journal of Applied Physics, vol. 25, p. L39, 1986.
[32] D. Das, S. M. Iftiquar, and A. K. Barua, "Wide optical-gap a-SiO:H films prepared by rf glow discharge," Journal of Non-Crystalline Solids, vol. 210, p. 148, 1997.
[33] S. M. Iftiquar, "The roles of deposition pressure and rf power in opto-electronic properties of a-SiO: H films," Journal of Physics D: Applied Physics, vol. 31, p. 1630, 1998.
[34] S. Fujikake, H. Ohta, P. Sichanugrist, M. Ohsawa, Y. Ichikawa, and H. Sakai, "a-SiO:H Films and Their Application to Solar Cells," Optoelectronics-Devices and Technologies, vol. 9, p. 379, 1994.
[35] S. Inthisang, K. Sriprapha, A. Yamada, and M. Konagai, "Characterization of wide bandgap a-SiO: H films and their application to thin film solar cells," p. 1, 2008.
[36] S. Inthisang, K. Sriprapha, S. Miyajima, A. Yamada, and M. Konagai, "Hydrogenated Amorphous Silicon Oxide Solar Cells Fabricated near the Phase Transition between Amorphous and Microcrystalline Structures," Japanese Journal of Applied Physics, vol. 48, p. 2402, 2009.
[37] P. Buehlmann, J. Bailat, D. Domine, A. Billet, F. Meillaud, A. Feltrin, and C. Ballif, "In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells," Applied Physics Letters, vol. 91, p. 143505, 2007.
[38] T. Grundler, A. Lambertz, and F. Finger, "N-type hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase as an intermediate reflector in silicon thin film solar cells," Physica Status Solidi (c), vol. 7, p. 1085, 2010.
[39] D. Veneri, L. V. Mercaldo, and I. Usatii, "Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells," Applied Physics Letters, vol. 97, p. 023512, 2010.
[40] M. Stutzmann, W. Jackson, and C. Tsai, "Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study," Physical Review B, vol. 32, p. 23, 1985.
[41] A. Matsuda, M. Takai, T. Nishimoto, and M. Kondo, "Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate," Solar Energy Materials and Solar Cells, vol. 78, p. 3, 2003.
[42] R. Schropp and M. Zeman, Amorphous and microcrystalline silicon solar cells: modeling, materials, and device technology: Kluwer Academic Publishers, 1998.
[43] A. Matsuda and K. Tanaka, "Plasma spectroscopy--Glow discharge deposition of hydrogenated amorphous silicon," Thin Solid Films, vol. 92, p. 171, 1982.
[44] J. Perrin, O. Leroy, and M. Bordage, "Cross-sections, rate constants and transport coefficients in silane plasma chemistry," Contributions to Plasma Physics, vol. 36, p. 3, 1996.
[45] L. Layeillon, A. Dollet, and B. Despax, "Plasma-enhanced deposition of a-Si-H: comparison of two reactor arrangements," The Chemical Engineering Journal and The Biochemical Engineering Journal, vol. 58, p. 1, 1995.
[46] H. Caquineau and B. Despax, "Influence of the reactor design in the case of silicon nitride PECVD," Chemical Engineering Science, vol. 52, p. 2901, 1997.
[47] C. Raman and K. Krishnan, "A new type of secondary radiation," Nature, vol. 121, p. 501, 1928.
[48] D. Long, Raman spectroscopy: McGraw-Hill New York, 1977.
[49] R. McCreery, Raman spectroscopy for chemical analysis: Wiley-Interscience, 2000.
[50] M. Islam and S. Kumar, "Influence of crystallite size distribution on the micro-Raman analysis of porous Si," Applied Physics Letters, vol. 78, p. 715, 2001.
[51] R. Kobliska and S. Solin, "Raman spectrum of wurtzite silicon," Physical Review B, vol. 8, p. 3799, 1973.
[52] M. Luysberg, P. Hapke, R. Carius, and F. Finger, "Structure and growth of hydrogenated microcrystalline silicon: investigation by transmission electron microscopy and Raman spectroscopy of films grown at different plasma excitation frequencies," Philosophical Magazine A, vol. 75, p. 31, 1997.
[53] S. Klein, F. Finger, R. Carius, and M. Stutzmann, "Deposition of microcrystalline silicon prepared by hot-wire chemical-vapor deposition: The influence of the deposition parameters on the material properties and solar cell performance," Journal of Applied Physics, vol. 98, p. 024905, 2005.
[54] A. Gordijn, J. Rath, and R. Schropp, "High-efficiency μc-Si solar cells made by very high-frequency plasma-enhanced chemical vapor deposition," Progress in Photovoltaics: Research and Applications, vol. 14, p. 305, 2006.
[55] Y. Tawada, M. Kondo, H. Okamoto, and Y. Hamakawa, "Hydrogenated amorphous silicon carbide as a window material for high efficiency a-Si solar cells," Solar Energy Materials, vol. 6, p. 299, 1982.
[56] A. Matsuda, M. Matsumura, S. Yamasaki, H. Yamamoto, T. Imura, H. Okushi, S. Iizima, and K. Tanaka, "Boron Doping of Hydrogenated Silicon Thin Films," Japanese Journal of Applied Physics, vol. 20, p. L183, 1981.
[57] B. Nemeth, Y. Xu, F. Hasoon, L. Hong, A. Duda, and Q. Wang, "P-layer Optimization in High Performance a-Si: H Solar Cells," p.5, 2010.
[58] M. Kubon, E. Boehmer, F. Siebke, B. Rech, C. Beneking, and H. Wagner, "Solution of the ZnO/p contact problem in a-Si: H solar cells," Solar Energy Materials and Solar Cells, vol. 41, p. 485, 1996.
[59] H. Schade, Z. E. Smith, J. H. Thomas Iii, and A. Catalano, "Hydrogen plasma interactions with tin oxide surfaces," Thin Solid Films, vol. 117, p. 149, 1984.
[60] S. S. Hegedus, W. A. Buchanan, and E. Eser, "Improving performance of superstrate pin a-Si solar cells by optimization of n/TCO/metal back contacts,", p. 603, 1997.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊