跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 12:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:凃博閔
研究生(外文):Tu, Po-Min
論文名稱:高效率近紫外光發光二極體元件製作
論文名稱(外文):Fabrication of High Efficiency Near-Ultraviolet Light Emitting Devices
指導教授:冉曉雯張俊彥
指導教授(外文):Zan, Hsiao-WenChang, Chun-Yen
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:92
中文關鍵詞:近紫外光發光二極體氮化鎵氮化鋁鎵銦垂直式發光二極體機械式剝離製程化學氣相沉積系統
外文關鍵詞:Near-UV LEDsGaNInAlGaNVertical LEDsMechanical lift-offMOCVD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:143
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於氮化鎵近紫外光發光二極體(near-UV LED)具有非常大的發展潛力及廣泛應用,如驗鈔、光觸媒除臭、空氣淨化器等紫外光光源的使用,因此越來越多的團隊開始研究高效率元件的製作及使用近紫外光於固態照明與螢光粉轉換光源之應用。
然而,低銦含量下的發光二極體其內部量子效率(IQE)驟降迅速,晶格品質與氮化鎵自我吸收的問題更導致製作高效率近紫外光發光二極體是相當困難的。文獻指出低銦含量氮化銦鎵(InGaN)量子井設計中,使用氮化鋁鎵(AlGaN)的位障來提高載子局限能力是必須的;但由於此兩材料氮化銦鎵(InGaN)及氮化鋁鎵(AlGaN)最佳化的成長溫度大不相同,因此深深的影響了兩者的晶格品質及其元件效率的表現。
此外,由於相對低價格及高品質的優點,藍寶石(Sapphire)是目前最廣泛使用於氮化鎵材料的磊晶基板,但由於其導電性及導熱性差的特性致使元件的表現及設計處處受限。近年來,許多研究團隊致力於發展雷射剝離laser lift-off (LLO)技術,及使用氮化鉻(CrN)、氧化鋅(ZnO)及矽摻雜氮化鎵(Si:GaN)等犧牲層來實現化學剝離chemical lift-off (CLO)技術,來實現獨立的氮化鎵薄膜及垂直式發光二極體元件製作,以提升更高的光電元件品質與效率。然而,高溫的雷射剝離製程將導致氮化鎵/藍寶石(GaN/sapphire)界面及保護層因熱衝擊而受損,進而造成元件漏電及低良率等問題;化學剝離製程雖然能避免雷射瞬間高溫加熱元件造成傷害,卻也造成後續蝕刻傷害及使用犧牲層造成晶格品質的問題。
本論文中,我們利用氮化鋁鎵銦(InAlGaN)來取代原本的氮化鋁鎵(AlGaN)的位障以實現高效率的近紫外光發光二極體,並開發一種使用倒六角錐結構Hexagonal Inversed Pyramid (HIP)來實現機械式剝離mechanical lift-off (MLO)製程以製作高品質氮化鎵垂直式發光二極體(Vertical-LED),此外效率驟降的物理意義、剝離的機制及其光電特性分析也將與本論文中有詳細的量測及調查。
首先,我們調查量子井中以氮化鋁鎵(AlGaN)及氮化鋁鎵銦(InAlGaN)為位障之氮化銦鎵(InGaN)近紫外光發光二極體效率驟降的表現,電致發光(Electroluminescence)結果顯示使用四元化合物材料(quaternary)的LED發光強度於350 mA及1000 mA電流操作下分別提升了25 %及55 %,更進一步的物理模擬顯示使用四元化合物材料的LED於高電流注入下提升了62 %的輻射再結合率及13 %較少的效率驟降,推測這些改善來自於載仔濃度的提升及載仔更均勻的重新分佈。
再者,我們使用倒六角錐結構來實現機械式剝離製程以製作高品質氮化鎵垂直式發光二極體,倒六角錐結構的製作採用高溫氫氧化鉀(KOH)濕蝕刻其氮化鎵/藍寶石基板的界面來完成,TEM分析結果顯示平均的線缺陷密度估計從2×10^9 降低至 1×10^8 cm−2,拉曼(Raman)光譜也揭露出使用倒六角錐結構的氮化鎵磊晶層之壓應力能有效的被釋放,最後我們成功的使用倒六角錐結構為犧牲層並於晶片鍵合降溫過程中實現了機械式剝離製程,其中剝離的物理機制、材料及元件的光電特性也將於本論文中詳細探討。
GaN-based near-ultraviolet light emitting devices (LEDs) have attracted great attention in last few years due to its potential applications in photo-catalytic deodorizing such as air conditioner, and there have been interests in solid-state lighting by using near-UV LEDs light for the phosphor-converting source. However, it is difficult to fabricate near-UV LEDs with high efficiency, because the internal quantum efficiency (IQE) decreases drastically under the low indium composition.
Moreover, crystalline quality and light absorption of GaN are significant for short wavelength near-UV LEDs. It’s well known that in low indium content InGaN QWs, AlGaN barrier is necessary for carrier confinement. But the two materials of AlGaN and InGaN are very different in growth temperature which affects strongly on the quality of material and device performances.
In addition, the sapphire is the most commonly used substrate because of its relative low cost, but it also limits the devices performance due to its poor electrical and thermal conductivity. During the last decade of years, the techniques of laser lift-off (LLO) and chemical lift-off (CLO) which use CrN layer, ZnO layer, and Si-doped n-GaN layer as the sacrificial layer have been adopted to fabricate the freestanding GaN membrane and the vertical LEDs (V-LEDs) for the purpose of high performance optoelectronic devices. However, the LLO process may induce some possible damages under high temperature in the GaN/sapphire interface. And even though the CLO can prevent the GaN layer from the laser damage during the laser lift-off process, but it also makes another chemical etching damages and reduce the crystal quality. Hence, we study the fabrication of mechanical lift-off (MLO) for high quality GaN-based V-LEDs with Hexagonal Inversed Pyramid (HIP) structures.
In this study, we demonstrate high efficient near-UV LEDs by replacing AlGaN by InAlGaN barrier in active region and mechanical lift-off technology. Furthermore, the efficiency droop characteristics, theoretical analysis of lift-off process, and optoelectronic properties of high efficient near-UV LEDs have been measured and investigated.
First, the efficiency droop in InGaN-based near-UV LED with AlGaN and InAlGaN barrier is investigated. Electroluminescence results indicate that the light performance of quaternary LEDs can be enhanced by 25 % and 55 % at 350 mA and 1000mA, respectively. Furthermore, simulations show that quaternary LEDs exhibit 62 % higher radiative recombination rate and low efficiency degradation of 13 % at a high injection current. We attribute this improvement to increasing of carrier concentration and more uniform redistribution of carriers.
Second, we report the fabrication of mechanical lift-off high quality GaN-based V-LED with HIP structures. The HIP GaN/air/Sapphire structures were formed at the GaN/sapphire substrate interface under high temperature during KOH wet etching process. The average threading dislocation density (TDD) was estimated by transmission electron microscopy (TEM) and found the reduction about one order. Raman spectroscopy revealed that the compressive stress of GaN epilayer was effectively relieved in the GaN-based LED with HIP structures. Finally, the mechanical lift-off process is claimed to be successful by using the HIP structures as a sacrificial layer during wafer bonding process. Furthermore, theoretical analysis of lift-off process, and optoelectronic properties of devices have been investigated.
Chapter 1 Introduction 1
1.1 Wide Bandgap Ⅲ-Nitride Materials 1
1.2 GaN-based Near-Ultraviolet Light-Emitting Diodes (Near-UV LEDs) 2
1.3 Content of Dissertation 9
Chapter 2 Properties of InGaN-based Near-UV LEDs 11
2.1 Structure of InGaN-based Near-UV LEDs 11
2.1.1 Epitaxy Structure of InGaN-based Near-UV LED 11
2.1.2 Chip Structure of Near-UV LEDs 14
2.2 The Physical Definition of Efficiencies 17
2.3 The Basic Concept of Efficiency Droop 19
Chapter 3 Experimental Instruments and Physical Models 21
3.1 Metal-organic Chemical Vapor Deposition System (MOCVD) 21
3.2 Materials and devices analysis 23
3.2.1 Photoluminescence (PL) 23
3.2.2 Atomic Force Microscopy (AFM) 25
3.2.3 Double Crystal X-ray Diffraction (DCXRD) 26
3.2.4 Scanning Electron Microscopy (SEM) 29
3.2.5 Transmission Electron Microscopy (TEM) 30
3.2.6 Electroluminescence (EL) 32
3.3 Advanced Physical Models of Semiconductor Devices (APSYS) 33
3.3.1 Theoretical Model 33
3.3.2 Bandgap Energy of Ⅲ-Nitride Alloys 35
3.3.3 Band Offset Ratio of Ⅲ-Nitride Alloys 37
3.3.4 Carrier Transportation in Ⅲ-Nitride Alloys 37
Chapter 4 Investigation of Efficiency Droop for InGaN-Based Near-UV Light-Emitting Diodes with InAlGaN Barrier 41
4.1 Introduction 41
4.2 Sample Structures and Fabrication Methods 41
4.3 Investigation of Optical Property and Surface Morphology 44
4.3.1 Optical Properties 44
4.3.2 Surface Morphology 45
4.3.3 Compositions and Thicknesses Analysis 47
4.4 Current-dependent Intensity and Efficiency 50
4.5 Theoretical Analysis 59
4.6 Summary 60
Chapter 5 High Quality GaN-based Vertical LED with Hexagonal Inversed Pyramid by Means of the Mechanical Lift-off 61
5.1 Introduction 61
5.2 Sample Structures and Fabrication Methods 62
5.2.1 Fabrication the Hexagonal Inversed Pyramid (HIP) Structure 62
5.2.2 Regrowth LED Structure and Wafer Bonding Process 63
5.2.3 Mechanical Lift-off by using HIP structure 63
5.3 Characteristics of GaN-based V-LED with HIP Structure 64
5.3.1 HIP Structure 64
5.3.2 Interface Morphologies 65
5.3.3 Vertical LED Structure and Surface Morphology 67
5.3.4 Raman Spectroscopy Analysis 68
5.3.5 Electrical and Optical Properties 70
5.4 Theoretical Analysis of Mechanical Lift-off 72
5.5 Summary 73
Chapter 6 Conclusions and Future Work 75
References 79
Publication list 87
Vita 92


[1] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
[2] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Markoc, G. Smith, M. Estes, B. Goldberg, W. Yank, and S. Krishnankutty, Appl. Phys. Lett. 71, 2154 (1997).
[3] T. G. Zhu, D. J. H. Lambert, B. S. Shelton, M. N. Wong, U. Chowdhury, H. K. Kwon, and R. D. Dupuis, Electron Lett. 36, 1971 (2000).
[4] G. T. Dang, A. P. Zhang, F. Ren, X. A. Cao, S. J. Pearton, H. Cho, J. Han, J. I. Chyi, C. M. Lee, C. C. Chuo, S. N. G. Chu, and R. G. Wilson, IEEE Trans. Electron Devices 47, 692 (2000).
[5] B. S. Shelton, D. J. H. Lambert, H. J. Jang, M. M. Wong, U. Chowdhury, Z. T. Gang, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng, and R. D. Dupuis, IEEE Trans. Electron Devices 48, 490 (2001).
[6] A. P. Zhang, J. Han, F. Ren, K. E. Waldrio, C. R. Abernathy, B. Luo, G. Dang, J. W. Johnson, K. P. Lee, and S. J. Pearton, Electronchem. Solid-State Lett. 4, G39 (2001).
[7] S. Nakamura, M. Senoh, S. Nagahama, N.Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 70, 868 (1997).
[8] S. Nakamura, Science 281, 956 (1998).
[9] Y. Arakawa, IEEE J. Select. Topics Quantum Electron. 8, 823 (2002).
[10] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl.Phys. 34, 797 (1995).
[11] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002).
[12] H. Morkoc, Nitride Semiconductors and devices, (Springer-Verlag, Berlin, 1999).
[13] E. F. Schubert, Light-Emitting Diodes, 2nd ed., pp. 212. (Cambridge University Press, Cambridge, 2006).
[14] H. Morkoc, Nitride Semiconductors and Devices (Spring Verlag, Heidelberg) (1999).
[15] J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, J. Lumin. 5, 84 (1972).
[16] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986).
[17] H. Amano, I. Akasaki, T. Kozawa, K. Hiramatsu, N. Sawaki, K. Ikeda, and Y. Ishii, J. Lumin. 40, 121 (1988).
[18] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Jpn. J. Appl. Phys. 28, 2112 (1989).
[19] S. Nakamura, Jpn. J. Appl. Phys. 30, 1705 (1991).
[20] S. Nakamura, T. Mukai, M. Senoh, and N. Jwasa, Jpn. J. Appl. Phys. 31, 1258 (1992).
[21] S. Nakamura, T. Mukai, M, Senoh, S. Nagahama, and N. Jwasa, Journal of Applied Physics 74, 3911 (1993).
[22] S. Nakamura, G. Fasol, Springer-Verlag, Berlin, (1997).
[23] J. I. Pankove, Mater Sci Eng B61-62, 305 (1999).
[24] A. Sandhu, Nature Photonics 1, 38 (2007).
[25] Y. S. Tang, S. F. Hu, C. C. Lin, N. C. Bagkar, and R. S. Liu , Appl. Phys. Lett. 90, 151108 (2007).
[26] Y. C. Chiu, W. R. Liu, C. K. Chang, C. C. Liao, Y. T. Yeh, S. M. Jang, and T. M. Chen, J. Mater. Chem. 20, 1755 (2010).
[27] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, M. Banas, L. Zhang, Y. K. Song, H. Zhou, and A. V. Nurmikko, Appl. Phys. Lett. 73, 1688 (1998).
[28] T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. 37, 1358 (1998).
[29] T. Nishida, and N. Kobayashi, Phys. Stat. Sol. A 176, 45 (1999).
[30] H. Hirayama, J. Appl. Phys. 97, 091101 (2005).
[31] M. S. Shur and A. Zukauskas, Editors, UV Solid-State Light Emitters and Detectors. Proc. NATO ARW, Series II, Vol. 144, Kluwer, Dordrecht, ISBN 1-4020-2034-1, pp. 41-58 (2004).
[32] M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, Semicond. Sci. Technol. 26, 014036 (2011).
[33] APSYS by Crosslight Software Inc, Burnaby, Canada: http://www.crosslight.com.
[34] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L.T. Romano, and N. M. Johnson, Appl. Phys. Lett. 75, 1360 (1999).
[35] W. Y. Lin, D. S. Wuu, K. F. Pan, S. H. Huang, C.E. Lee, W.K. Wang, S. C. Hsu, Y. Y. Su, S. Y. Huang, and R. H. Horng, IEEE Photonics Technol. Lett. 17, 1809 (2005).
[36] H. Goto, S. W. Lee, H. J. Lee, H.-J. Lee, J. S. Ha, M. W. Cho, and T.Yao, Phys. Status Solidi. C 5, 1659 (2008).
[37] D. J. Rogers, F. Hosseini Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, T. Monteiro, M. R. Correira, M. Peres, A. Neves, D. McGrouther, J. N. Chapman, and M. Razeghi, Appl. Phys. Lett. 91, 071120 (2007).
[38] J. Park, K. M. Song, S. R. Jeon, J. H. Baek, and S. W. Ryu, Appl. Phys. Lett. 94, 221907 (2009).
[39] H. Morkoç, Handbook of Nitride Semiconductors and Devices (Wiley, New York), Vol. 3. pp. 39 (2008).
[40] S. Nakamura, M. Senoh, and T. Mukai, Appl. Phys. Lett. 62, 2390 (1993).
[41] E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, Cambridge), pp. 146. (2006).
[42] E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, Appl. Phys. Lett. 71, 921 (1997).
[43] H. C. Yang, T. Y. Lin, M. Y. Huang, and Y. F. Chen, J. Appl. Phys. 86, 6124 (1999).
[44] S. N. Lee, T. Sakong, W. S. Lee, H. S. Paek, J. K. Son, E. Yoon, O. H. Nam, Y. Park, J. Cryst. Growth. 261, 249 (2004).
[45] E. Oh, H. S. Park, Y. Park, Appl. Phys. Lett. 72, 70 (1998).
[46] M. G. Cheong, K. S. Kim, C. S. Kim, R. J. Choi, H. S. Yoon, N. W. Namgung, E. K. Suh, and H. J. Lee, Appl. Phys. Lett. 80, 1001 (2002).
[47] M. Smith, G. D. Chen, J. Y. Lin, H. X. Jiang, A. Salvador, B. N. Sverdlov, A. Botchkarev, H. Morkoc, and B. Goldenberg, Appl. Phys. Lett. 68, 1883 (1996).
[48] U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, and P. Schlotter, Appl. Phys. Lett. 72, 1326 (1998).
[49] S. N. Lee, J. K. Son, T. Sakong, W. Lee, H. Paek, E. Yoon, J. Kim, Y. Cho, O. Nam, and Y. Park, Journal of Crystal Growth. 272, 455 (2004).
[50] Kremzov R., private communications (2009).
[51] E. F. Schubert, Light-Emitting Diodes, 2nd ed., pp. 86. (Cambridge University Press, Cambridge, 2006).
[52] A. Y. Kim, W. Götz, D. A. Seigerwald, J. J. Wierer, N. F. Gardner, J. Sun, S. A. Stockman, P. S. Martin, M. R. Krames, R. S. Kern, and F. M. Steranka, Phys. Status Solidi A 188, 15 (2001).
[53] A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Yu. T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, Semiconductors 40, 605 (2006).
[54] V. Rozhansky and D. A. Zakheim, Phys. Status Solidi C 3, 2160 (2006).
[55] V. Rozhansky and D. A. Zakheim, Phys. Status Solidi A 204, 227 (2007).
[56] K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, J. Appl. Phys. 101, 033104 (2007).
[57] M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, Appl. Phys. Lett. 91, 231114 (2007).
[58] I.A. Pope, P.M. Smowton, P. Blood, J.D. Thomson, M.J. Kappers, and C.J. Humphreys, Appl. Phys. Lett. 82, 2755 (2003).
[59] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007).
[60] I. V. Rozhansky and D. A. Zakheim, Phys. Status Solidi A 204, 227 (2007).
[61] M.F. Schubert, J. Xu, J.K. Kim, E.F. Schubert,M.H. Kim, S. Yoon, S.M. Lee, C. Sone, T. Sakong, and Y. Park, Appl. Phys. Lett. 93, 041102 (2008).
[62] K. J. Vampola, M. Iza, S. Keller, S. P. DenBaars, and S. Nakamura, Appl. Phys, Lett. 94, 061116 (2009).
[63] K. Ding, Y. P. Zeng, X. C .Wei, Z. C. Li, J. X. Wang, H. X. Lu, P. P. Cong, X. Y. Yi, G. H.Wang, and J. M. Li, Appl Phys B 97, 465 (2009).
[64] C. H. Wang, J. R. Chen, C. H. Chiu, H. C. Kuo, Y. L. Li, T. C. Lu, and S. C. Wang, IEEE Photon. Technol. Lett. 22, 236 (2010).
[65] N.F. Gardner, G.O. Mueller, Y.C. Shen, G. Chen, and S. Watanabe, Appl. Phys. Lett. 91, 243506 (2007).
[66] Y. C. Shen, G. O. Muller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).
[67] K. A. Bulashevich and S. Y. Karpov, Phys. Status Solidi C 5, 2066 (2008).
[68] A. David and M. J. Grundmann, Appl. Phys, Lett. 96, 103504 (2010).
[69] B. Monemar and B. E. Sernelius, Appl. Phys. Lett. 91, 181103 (2007).
[70] X.A. Cao, Y. Yang, and H. Guo, J. Appl. Phys. 104, 093108 (2008).
[71] Y. Yang, X. A. Cao, and C. Yan, IEEE Transactions On Electron Devices 55, 1771 (2008).
[72] A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Yu. T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, Semiconductors 40, 605 (2006).
[73] Y. K. Kuo, J. Y. Chang, M. C. Tsai, and S. H. Yen, Appl. Phys. Lett. 95, 011116 (2009).
[74] Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, Appl. Phys. Lett. 92, 261103 (2008).
[75] R. Davis, A. Roskowski, E. Preble, J. Speck, B. Heying, J. Freitas, E. Glaser, and W. Carlos, Proc. IEEE 90, 993 (2004).
[76] S. L. Chuang and C. S. Chang, Phys. Rev. B 54, 2491 (1996).
[77] I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).
[78] Y. P. Varshni, Physica 34, 149 (1967).
[79] K. Osamura, S. Naka, and Y. Murakami, J. Appl. Phys. 46, 3432 (1975).
[80] M. E. Aumer, S. F. LeBoeuf, F. G. McIntosh, and S. M. Bedair, Appl. Phys. Lett. 75, 3315 (1999).
[81] C. G. Van de Walle and J. Neugebauer, Nature 423, 626 (2003).
[82] V. Fiorentini, F. Bernardini, and O. Ambacher, Appl. Phys. Lett. 80, 1204 (2002).
[83] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, Appl. Phys. Lett. 77, 250 (2000).
[84] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers,
E.Hu,U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, Appl. Phys. Lett. 73,
2006 (1998).
[85] C. M. Caughey and R. E. Thomas, Proc. IEEE 55, 2192 (1967).
[86] M. Farahmand et al. IEEE Trans. Electron Devices 48, 535 (2001).
[87] I. H. Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).
[88] T. Mukai and S. Nakamura, Jpn. J. Appl. Phys. 38, 5735 (1999).
[89] R. H. Horng, W. K. Wang, S. C. Huang, S. Y. Huang, S. H. Lin, C. F. Lin, and D. S. Wuu, J. Cryst. Growth 298, 219 (2007).
[90] D. Morita, M. Yamamoto, K. Akaishi, K. Matoba, K. Yasutomo, Y. Kasai, M. Sano, S. i. Nagahama, and T. Mukai, Jpn. J. Appl. Phys. 43, 5945 (2004).
[91] Q. Shan, Q. Dai, S. Chhajed, J. Cho, and E. F. Schubert, J. Appl. Phys. 108, 084504 (2010).
[92] APSYS by Crosslight Software Inc., Burnaby, Canada: http://www.crosslight.com.
[93] J. J. Wu, X. X. Han, J. M. Li, H. Y. Wei, G. W. Cong, X. L. Liu, Q. S. Zhu, Z. G. Wang, Q. J. Jia, L. P. Guo, T. D. Hu, and H. H. Wang, Optical Materials 28, 1227 (2006).
[94] S. Yamaguchi, M. Kariya, T. Kashima, S. Nitta, M. Kosaki, Y. Yukawa, H. Amano, and I. Akasaki, Phys. Rev. B 64, 035318 (2001).
[95] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN based Light Emitters and Lasers, Spring-Verlag, Berlin and Heidelberg (1997).
[96] E. F. Schubert, Light Emitting Diodes, 1st ed. (Cambridge University Press, Cambridge, 2003).
[97] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, L. Zhang, Y. K. Song, H. Zhou, and A. V. Nurmikko, Appl. Phys. Lett. 73, 1688 (1998).
[98] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L.T. Romano, and N. M. Johnson, Appl. Phys. Lett. 75, 1360 (1999).
[99] W. Y. Lin, D. S. Wuu, K. F. Pan, S. H. Huang, C.E. Lee, W.K. Wang, S. C. Hsu, Y. Y. Su, S. Y. Huang, and R. H. Horng, IEEE Photonics Technol. Lett. 17, 1809 (2005).
[100] H. Goto, S. W. Lee, H. J. Lee, H.-J. Lee, J. S. Ha, M. W. Cho, and T.Yao, Phys. Status Solidi C 5, 1659 (2008).
[101] D. J. Rogers, F. Hosseini Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, T. Monteiro, M. R. Correira, M. Peres, A. Neves, D. McGrouther, J. N. Chapman, and M. Razeghi, Appl. Phys. Lett. 91, 071120 (2007).
[102] J. Park, K. M. Song, S. R. Jeon, J. H. Baek, and S. W. Ryu, Appl. Phys. Lett. 94, 221907 (2009).
[103] M. H. Lo, P. M. Tu, C. H. Wang, C. W. Hung, S. C. Hsu, Y. J. Cheng, H. C. Kuo, H. W. Zan, S. C. Wang, C. Y. Chang, and S. C. Huang, Appl. Phys. Lett. 95, 041109 (2009).
[104] D. D. Koleske, M. E. Coltrin, S. R. Lee, G. Thaler, K. C. Cross, and M. J. Russell, Proc. SPIE 6841, 68410H (2007).
[105] P. Puech, F. Demangeot, J. Frandon, C. Pinquier, M. Kuball, V. Domnich, and Y. Gogotsi., J. Appl. Phys. 96, 2853 (2004).
[106] S. Hearne, E. Chason, J. Han, J.A. Floro, J. Figiel, J. Hunter, H. Amano, and I.S.T. Tsong, Appl. Phys. Lett. 74, 356 (1999).
[107] K. Kusakabe, A. Kikuchi, and K. Kishino, Jpn. J. Appl. Phys. 40, L192 (2001).
[108] J. R. Chang, T. H. Yang, J. T. Ku, S. G. Shen, Y. C. Chen, Y. Y. Wong, and C.Y. Chang, J. Cryst. Growth 311, 1997 (2009).
[109] A. Krost and A. Dadgar, phys. stat. sol. (a) 194, 361 (2002).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊