跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 03:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏瑜
研究生(外文):Huang, Bo-Yu
論文名稱:高效率有機/無機混合型異質接面太陽能電池
論文名稱(外文):High Efficiency Organic/Inorganic Hybrid Heterojunction Solar Cells
指導教授:余沛慈余沛慈引用關係朱治偉
指導教授(外文):Yu, Pei-ChenChu, Chih-Wei
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:57
中文關鍵詞:太陽能電池混合型異質接面
外文關鍵詞:solar cellhybirdsiliconheterojunction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:387
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機/無機混合型太陽能電池與傳統矽基板太陽能電池比較起來成本上節省了許多,這種元件利用無機材料的高光學吸收以及好的載子遷移率,配合上有機材料製程的簡易製程步驟與低廉的價格,結合兩者的優點所成的元件。然而如何使電洞順利傳導過有機層形成的能障仍是這個新穎元件最重要的課題。在這篇論文中,我們成功製作出PEDOT:PSS/Si異質接面混合型太陽能電池,平均轉換效率可達9.84%。為達成有機液態製成矽基太陽能電池的目標。我們利用銀奈米線取代熱蒸鍍銀電極,簡化製程步驟更可改善串聯電阻。最後我們更進步建構了一個模型來模擬此種混合型太陽能電池,其最高效率估計可達20%以上。
在本論文的第一部份我們討論如何製作具有矽奈米線與金字塔表面結構之混合型太陽能電池,其異質接面是由PEDOT:PSS直接旋塗至n型矽基板上所製作。我們發現工業標準的濕蝕刻金字塔結構可加強其抗反射程度以及增加表面面積載子蒐集,並且不會造成矽表面有著過多的傷害。接著我們將正電極替換成旋塗銀奈米線,這些交錯編織狀的銀奈米線造就了高穿透度以及高導電性,並且可以很簡單的旋塗在矽基板上。
第二部分我們研發了一套利用解普瓦松與連續方程式的一維運算系統,藉由實驗推估的材料參數可以計算出元件的能階位置與電流電壓特性,於是我們利用PEDOT:PSS/Si的能帶結構探討其表面效應與載子傳遞機制,我們利用一個很薄的缺陷層來形容PEDOT:PSS與Si之間所存在的缺陷。並且經由此模型估計出混合型太陽能電池改善其反射損耗與材料性質之後,便能達到20%以上的效率。

An organic/inorganic hybrid solar cells are cheap alternatives to conventional silicon-based solar cells. The devices take the advantages of high optical absorption and carrier mobility of inorganic semiconductors, while maintaining the easy processing attributes of polymers or other soft materials. However, the conduction of holes has been a major technical barrier for the advance of such novel devices. In this study, a hybrid PEDOT:PSS/silicon heterojunction solar cell is demonstrated with an average power conversion efficiency of 9.84% using rapid solution-based organic processes. Then we propose the use of silver nanowires (AgNWs) to improve the series resistance of the hybrid solar cells and further to realize solution-processed silicon-based photovoltaics. At last, the modeling of such devices predicts an efficiency exceeding 20% with improved reflection loss and material properties, shedding light into the attainment of high-efficiency and low-cost photovoltaics based on organic/inorganic hybrid devices.
In the first section of my thesis, we discuss how to fabricate hybrid heterojunction solar cells with silicon nanowire and pyramidal surface textures. The hybrid heterojunction solar cells are demonstrated based on the composite of conductive polymer PEDOT:PSS directly spun-cast on a micro-textured n-type crystalline silicon wafer. Moreover, the industrial-standard microscale surface textures improve the antireflection and carrier collection without increasing much surface recombination. Then we replace the frontal metal contacts with the coating of AgNWs. The cross-linked AgNWs offer high transparency and low sheet resistance, which can be easily fabricated using low-cost and non-toxic materials.
In the second section, we employed a self-consistent drift-diffusion and Poisson solver to theoretically investigate the effects of interface/bulk defects, doping concentration, and back surface recombination on the device performance. With a proper choice of band alignment, the modeling of such devices predicts an efficiency exceeding 20% with improved reflection loss and material properties.

第一章 序論及研究動機............................................................................................1
1-1 太陽能源的發展........................................................................................2
1-2 矽太陽能電池與有機太陽能電池發展現況............................................5
1-3 研究動機..................................................................................................13
第二章 太陽能電池工作原理及量測分析..............................................................14
2-1 太陽能電池基本架構..............................................................................15
2-2 太陽能電池光電轉換原理......................................................................16
2-3 太陽能電池元件常用參數定義..............................................................19
2-4 太陽能電池分析量測技術......................................................................23
第三章 混合式太陽能電池製程與量測分析............................................................28
3-1 混合式太陽能電池製程..........................................................................30
3-2 光電轉換效率量測及外部量子效率量測..............................................35
3-3 銀奈米線電極應用於混合式太陽能電池..............................................37
第四章 混合式太陽能電池電性模擬分析................................................................44
4-1電性模擬原理...........................................................................................44
4-2 材料與元件參數......................................................................................47
4-3 模擬結果與討論......................................................................................48
第五章 總結與未來展望............................................................................................52
參考文獻......................................................................................................................53
1. M. A. Green, Third Generation Photovoltaics: Advanced Solar Electricity Generation, Springer- Verlag, Berlin, 1-3, (2003).
2. M.A. Green, K. Emery, H. Yoshihiro, W. Wilhelm, “Solar Cell Efficiency Tables v.33”, Prog. Photovolt: Res. Appl., 17, 85-94, (2009).
3. 戴寶通, 鄭晃忠, et al., “太陽能電池技術手冊”, 1 ed., 台灣電子材料與元件協會, (1998).
4. 林明獻, “太陽能電池技術入門”, 2 ed., 全華圖書股份有限公司, (1998).
5. 黃惠良, et al., “太陽電池”, 1 ed., 五南圖書出版股份有限公司, (1998).
6. X. Wu, JC. Keane, RG. Dhere, C. DeHart, A. Duda, TA. Gessert, S. Asher, DH. Levi, P. Sheldon, “16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell”, Proceedings of the 17th European Photovoltaic Solar Energy Conference, 995-1000, (2001).
7. http://www.greentechmedia.com/articles/read/stealthyalta-devices-next-gen-pv-challenging-the-status-quo/
8. Y. Masafumi , “III-V compound multi-junction solar cells: present and
Future”, Solar energy materials and solar cells, 75, 261-269, (2003).
9. M.A. Green, K. Emery, H. Yoshihiro, W. Warta, “Solar cell efficiency tables v.37”, Prog. Photovolt: Res. Appl., 19, 84-92, (2011).
10. J. Zhao, A. Wang, M. A. Green, F. Ferrazza, “19.8% efficient ‘‘honeycomb’’ textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Applied Physics Letters, 73, 1991-1993, (1998).
11. M. Taguchi, A. Terakawa, E. Maruyama, M. Tanaka, “Obtaining a Higher Voc in HIT Cells”, Prog. Photovolt: Res. Appl, 13, 481-488, (2005).
12. H. Kallmann, M. Pope, J. Chem. Phys. 30, 585 (1959)
13. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986)
14. N. S. Sariciftci, L. Smilowitz, D. Braun, G. Srdanov, V. Srdanov, F. Wudl, A. J. Heeger, Synth. Met. 59, 333(1993)
15. G. Yu, K. Pakbaz, A. J. Heeger, Appl. Phys. Lett. 64, 3422(1994)
16. K. M. Coakley, M. D. McGehee, Chem. Mater. 16, 4533 (2004).
17. H. Hoppe, N. S. Sariciftci, J. Mater. Res. 19, 1924 (2004).
18. L. M. Chen, Z. Hong, G. Li, Y. Yang, Adv. Mater. 14, 1434 (2009).
19. G. Dennler, M. C. Scharber, C. J. Brabec, Adv. Mater. 21, 1323 (2009)
20. S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 107, 1324 (2007).
21. T. L. Benanti, D. Venkataraman, Photosynth. Res. 87, 73 (2006).
22. H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Adv. Func. Mater. 14, 1005 (2004)
23. G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 4, 864 (2005).
24. R. F. Service, Science 319, 718 (2008).
25. R. G. Little and M. J. Nowlan, Prog. Photovoltaics 5, 309 (1997).
26. V. M. Fthenakis and H. C. Kim, Sol. Energy 85, 1609 (2010).
27. M. J. Sailor, E. J. Ginsburg, C. B. Gorman, A. Kumar, R. H. Grubbs, and N. S. Lewis, Science 249, 1146 (1990).
28. A. A. D. T. Adikaari, D. M. N. M. Dissanayake, and S. R. P. Silva, IEEE. J. Sel. Top. Quant. 16, 1595 (2010).
29. J. W.P. Hsu and M. T. Lloyd, Mrs. Bull. 35, 422 (2010).
30. F. Zhang, B. Sun, T. Song, X. Zhu, and S. T. Lee, Chem. Mater. 23, 2084 (2011).
31. S. C. Shiu, J. J. Chao, S. C. Hung, C. L. Yeh, and C. F. Lin, Chem. Mater. 22, 3108 (2010).
32. J. C. Nolasco, R. Cabr?? J. Ferr??Borrull, L. F. Marsal, M. Estrada, and J. Pallar?嫳, J. Appl. Phys. 107, 044505 (2010).
33. L. He, Rusli, C. Jiang, H. Wang, and D. Lai, IEEE. Electr. Device L. 32, 1406 (2011).
34. X. Shen, B. Sun, D. Liu, and S. T. Lee, J. Am. Chem. Soc. 133, 19408 (2011).
35. L. He, C. Jiang, Rusli, D. Lai, and H. Wang, Appl. Phys. Lett. 99, 021104 (2011).
36. Jeffery L. Gray, “The Physics of the Solar Cell,” in Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, New York, 61-111, (2003).
37. Sze S, Physics of semiconductor Devices, 3rd Edition, John Wiley & Sons, New York, 719-741, (2007).
38. Keith Emery, “Measurement and Characterization of Solar Cells and Modules,” in Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, New York, 701-752, (2003).
39. M. Meusel, C. Baur1, G. Le´tay, A.W. Bett, W. Warta and E. Fernandez, “ Spectral Response Measurements of Monolithic GaInP/Ga(In)As/Ge Triple-Junction Solar Cells: Measurement Artifacts and their Explanation, ” Prog. Photovolt: Res. Appl., 11, 499-514, (2003).
40. Yasuhiro Matsumoto, Magali Estrada and Jairo C. Nolasco, IEEE (2008)
41. P.K. Singh, R. Kumar, M. Lal, S.N. Singh, B.K. Das, “Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions”, Sol Energy Mater. Sol. Cells, 70, 103-113, (2001).
42. L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, Steven F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, U. Rapolc, “Strong broadband optical absorption in silicon nanowire films”, J. Nanophotonics, 1, 013552, (2007).
43. B. M. Kayes, H. A. Atwater, N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells”, J. Appl. Phys., 97, 114302, (2005).
44. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells”, Appl. Phys. Lett., 91, 233117, (2007).
45. B. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources”, Nature, 449, 885-889, (2007).
46. Z. Huang, H. Fang, J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter Length and Density”, Adv. Mater., 19, 744-748, (2007).
47. Z. P. Huang, N. Geyer1, P. Werner1, Johannes de Boor1, Ulrich G?宄ele1, “Metal-Assisted Chemical Etching of Silicon: A Review”, 23, 285-308, (2011).
48. J. Cuiffi, T. Benanti, W. J. Nam, and S. Fonash, Appl. Phys. Lett. 96, 143307 (2010).
49. Y. Liu, Y. Sun, and A. Rockett, Sol. Energ. Mat. Sol. C. 98, 124 (2012).
50. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf,, J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006).
51. C. Waldauff, P. Schilinsky, J. Hauch, and C. J. Brabec, thin solid films 451, 503 (2004).
52. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, Adv. Mater. 19, 1551 (2007).
53. A. Das, V. Meemongkolkiat, D. S. Kim, S. Ramanathan, and A. Rohatgi, IEEE. T. Electron Dev. 57, 2462 (2010).
54. J. Y. Kim, M. H. Kwon, Y. K. Min, S. Kwon, D. W. Ihm, Adv. Mater. 19, 3501 (2007).
55. I. Ding, N. T?膺reault, J. Brillet, B. E. Hardin, E. H. Smith, S. J. Rosenthal, F. Sauvage, M. Gr?鱸zel, and M. D. McGehee, Adv. Funct. Mater. 19, 2431 (2009).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊