跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/28 00:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊金秀
研究生(外文):Nwe Ni Aye
論文名稱:透過生理訊號觀察玩家自我調節能力對心流經驗的影響-以音樂節奏遊戲為例
論文名稱(外文):The influence of Flow Experience through Physiological Signals and Player’s Self-Regulation: A study for Music Games
指導教授:孫春在孫春在引用關係
指導教授(外文):Sun, Chuen-Tsai
學位類別:碩士
校院名稱:國立交通大學
系所名稱:多媒體工程研究所
學門:電算機學門
學類:軟體發展學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:76
中文關鍵詞:自我調節能力、生理訊號、心流經驗、遊戲表現
外文關鍵詞:Self-regulation, physiological signals, Flow Experience, Game Performance
相關次數:
  • 被引用被引用:8
  • 點閱點閱:647
  • 評分評分:
  • 下載下載:146
  • 收藏至我的研究室書目清單書目收藏:0
本研究的主旨在於探討是否可以透過生理訊號,觀察玩家自我調節能力對心流經驗的影響。不同自我調節能力的玩家,除了從外界獲得外在回饋(例如:老師評語或酬勞)之外,另外從自行感覺中亦可獲得愉悅感作為內在回饋。過去許多研究中,主要聚焦在如何操弄外在回饋以提升個人的學習表現。少有研究直接觀察個人在學習過程中內在回饋所扮演的角色。其主要原因在於內在回饋屬於個人內在感受難以測量。因此本研究主要使用生理訊號偵測的方式,觀察不同自我調節在獲得內在回饋上的差異,是否會影響個人獲得心流經驗與遊戲表現。

本研究以音樂節奏遊戲為平台,以ASUS Vito W1 滑鼠與 EMotion Recognition 臉部表情辨識軟體,兩者為偵測生理訊號之工具。並探討不同自我調節能力的玩家與遊戲互動之下,所偵測到的生理訊號做為依據,觀查其心流經驗與遊戲表現。本研究發現,生理訊號確實可以預測出,不同特性玩家在遊戲過程中所感受到的生理回饋,而影響到玩家的,整體心流經驗與遊戲表現。自我調節能力越高的玩家在遊戲過程中越能觀察自己的行表現,則越能夠操縱自如,並會選擇適合的關卡作為挑戰,而得到越多的正向生理回饋,並且心流經驗也越高。

關鍵字:自我調節能力、生理訊號、心流經驗、遊戲表現
The purpose of the study is to observe the influence of the players’ self-regulation on the flow experience through the physiological signals. The different self-regulation players are not only receiving the external feedback (for example: teacher reviews or rewards) but also taking their natural pleasure as internal feedback. In the existing studies, they mainly focused on how to manipulate the external feedback to enhance their academic performance. Only few studies have directly observed individual learning scale using internal feedback action. The main reason is that it is not easy to measure personal feeling through the internal feedback. In this study, using the methods of physiological signals detection, observing the variation that the different self-regulation player obtaining from the internal feedback; it is to study how it can impact the individual through obtaining flow experience and playing game Performance.

In this study, using music rhythm game as the platform and using ASUS Vito W1 and Emotion Recognition as facial expression recognition software, both are used as the detection tool for physiological signals. Based on the interaction of different self-regulation players with the game and the detecting physiological signals, it is to observe the performance of flow experience and the game. The study found that the physiological signals can predict the obtaining biofeedback of different player through playing game. It can impact the whole flow experience and the playing game of the player.

Keywords: Self-regulation, physiological signals, Flow Experience, Game Performance
目錄
中文摘要……………………………………………………………… III
ABSTRACT……………………………………………………………… IV
誌謝…………………………………………………………………… V
目錄…………………………………………………………………… VI
表目錄………………………………………………………………… IX
圖目錄………………………………………………………………… X
第一章 緒論………………………………………………………… 1
1.1 研究動機 …………………………………………………… 1
1.2 研究背景 …………………………………………………… 3
1.2.1 遊戲性質 ……………………………………………… 3
1.2.2 生理訊號 ……………………………………………… 4
1.2.3 自我調節 ……………………………………………… 5
1.2.4 心流經驗與測量方法………………………………… 5
1.2.5 小結 …………………………………………………… 6
1.3 研究目的 …………………………………………………… 8
1.4 研究問題 …………………………………………………… 8
1.5 研究貢獻 …………………………………………………… 9
第二章 文獻探討…………………………………………………… 10
2.1 遊戲 ………………………………………………………… 10
2.1.1 遊戲的回饋機制……………………………………… 10
2.1.2 音樂節奏遊戲簡介……………………………………… 12
2.1.3 小結……………………………………………………… 13
2.2 遊戲與心流經驗……………………………………………… 14
2.2.1 心流理論………………………………………………… 14
2.2.2 心流經驗測量…………………………………………… 16
2.2.3 遊戲過程所引發的心流路徑…………………………… 18
2.2.4 小結……………………………………………………… 20
2.3 自我調節……………………………………………………… 20
2.3.1 自我調節學習理論……………………………………… 20
2.3.2 自我調節歷程…………………………………………… 21
2.3.3 自我調節歷程與心流經驗……………………………… 23
2.3.4 小結……………………………………………………… 24
2.4 生理訊號……………………………………………………… 25
2.4.1 心跳率…………………………………………………… 26
2.4.2 面部表情………………………………………………… 27
2.4.3 小結…………………………………………………………… 28
第三章 研究方法…………………………………………………… 29
3.1 研究架構……………………………………………………… 29
3.2 研究假設……………………………………………………… 30
3.3 研究對象……………………………………………………… 31
3.4 研究工具……………………………………………………… 31
3.4.1 量表指標………………………………………………… 31
3.4.2 生理訊號指標…………………………………………… 35
3.4.3 實驗平台………………………………………………… 38
3.5 研究流程……………………………………………………… 40
3.5.1 實驗流程………………………………………………… 40
3.5.2 遊戲介面………………………………………………… 42
3.5.3 資料收集………………………………………………… 44
第四章 研究結果與討論……………………………………………… 47
4.1玩家自我調節能力與關卡選擇………………………………… 47
4.1.1 玩家自我調節能力差異………………………………… 47
4.1.2 玩家在各關卡的遊戲表現……………………………… 48
4.1.3 玩家在關卡間的遊戲表現……………………………… 50
4.2 玩家自我調節能力與生理回饋……………………………… 52
4.2.1 心跳率變化……………………………………………… 52
4.2.2 臉部表情變化…………………………………………… 54
4.3 玩家自我調節能力與心流經驗的關係……………………… 56
4.4 自我調節能力、生理回饋預測遊戲表現與心流經驗……… 58
4.4.1 心流經驗………………………………………………… 59
4.4.2 遊戲表現………………………………………………… 62
4.5 小結…………………………………………………………… 63
第五章 結論與未來展望 …………………………………………… 65
5.1 結論…………………………………………………………… 65
5.2 建議與未來展望……………………………………………… 67
5.2.1 建議 ……………………………………………………… 67
5.2.2 未來展望………………………………………………… 68
參考文獻………………………………………………………………… 70
附錄 A…………………………………………………………………… 74
A.1 ……………………………………………………………………… 74
附錄 B…………………………………………………………………… 76
B.1 ……………………………………………………………………… 76
中文部份

孫春在、林珊如(2007)。網路合作學習。台北:心理出版社。

林宜美 (2004)。行為的生理基礎。台北:五南圖書出版社。

王偉存(2011)。遊戲回饋機制對玩家自我調節與遊戲經驗的影響─以音樂節奏遊戲為例。國立交通大學理學院碩士資訊科學與工程研究所碩士論文。

龍明志(2011)。以玩家生理訊號為基礎的遊戲歷程與樂趣分析。國立交通大學理學院碩士在職專班資訊科學與工程研究所碩士論文。

楊凱文(2008)。遊戲情境中之生理回饋與心流經驗。國立交通大學理學院碩士在職專班網路學習學程碩士論文。

洪家祐(2007)。遊戲情境中之自我效能與自我調節對心流經驗的影響。國立交通大學理學院碩士在職專班網路學習學程碩士論文。

黃瓊慧(2000)。從沉浸(flow)理論探討台灣大專學生網路使用之行為。國立交通大學傳播研究所碩士論文。

英文部份

Bilodeau, I. M. (1958). Variable frequency of knowledge of results and the learning of a simple skill. Journal of Experimental Psychology, 55, 379-383.

Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.

Bandura, A. (1991). Social cognitive theory of self-regulation. Organizational Behavior and human Decision Processes, 50(2), 248-284.

Bandura, A. (1999). Social cognitive theory of personality. In D. Cervone, & Y. Shoda (Eds.), The coherence of personality: Social cognitive bases of consistency, variability, and organization. New York : Guilford Press.

Bracken, C. C., Jeffres,L. W., & Neuendorf, K. A. (2004). Criticism or praise? The impact of verbal versus text only computer feedback on social presence. CyberPyschology & Behavior, 7(3), 349-357.

Cacioppo, J.T. (2004). Feelings and emotions: roles for electrophysiological markers. Biological Psychology, 67, 235-243.

Carey, K. B., Neal, D. J., & Collins, S. E. (2004). A psychometric analysis of the selfself-regulation questionnaire. Addictive Behaviors, 29(2), 253-260.

Chen, S. Y., Ghinea, G., & Macredie, R. D. (2006). A cognitive approach to user perception of multimedia quality: An empirical investigation. International Journal of Human-Computer Studies, 64(12), 1200-1213.

Csikszentmihalyi, M. (1975). Beyond Boredom and Anxiety. San Francisco: Jossey-Bass Publishers.

Csikszentmihalyi, M. (1975a). Play and Intrinsic Rewards. Journal of Humanistic Psychology, 15, 41-63.

Csikszentmihalyi, M., & Csikszentmihalyi, I. S. (1988). Optimal experience: psychological studies of flow in consciousness. New York: Cambridge University Press.

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper & Row.

Ekman, P., & Friesen, W. V. (1971). Constants Across cultures in the Face and Emotion. Journal of Personality and Social Psychology, 17(2), 124~129.

Ekman, P., & Friesen, W. (1978). Facial Action Coding system: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press.


Finneran, C. M., & Zhang, P. (2003). A Person-Artifact-Task (PAT) Model of Flow Antecedents in Computer-Mediated Environments. International Journal of Human-Computer Studies, Special Issue on HCI and MIS, 59(4), 397-402.

Finneran, C. M. & Zhang. P. (2005). Flow in computer-mediated environments: promises and challenges. Communications of the Association for Information System, 15, 82-101.

Kaiser, S., Wehrle, T., & Edwards, P. (1994). Multi-Modal Emotion Measurement in an Interactive Computer Game: A Pilot-Study, In Frijda, N. H. (ed.), Proceedings of the 8th Conference of the International Society for Research on Emotions, University of Geneva,Switzerland, 275-279.

Kristina, S., & Tanja, S. (2009). Towards emotion recognition from electroencephalographic signals. Affective Computing and Intelligent Interaction and Workshops. 3rd International Conference on Karlsruhe Germany, 1-6.

Macaulay, M. (2004). The speed of mouse-click as a measure of anxiety during human-computer interaction. Behaviour and Information Technology. 23(6), 427-433.
Moneta, G. B., & Csikszentmihalyi, M. (1996). The effect of perceived challenges and skills on the quality of subjective experience. Journal of Personality, 64(2), 275-310.

Nakamura, J., & Csikszentmihalyi, M. (2001). Catalytic creativity, : The case of linus pauling. American Psychologist, 56(4), 337-341.

Novak, T. P., & Hoffman, D. L. (1997). Measuring the Flow Experience Among Web Users. Paper presented at the Interval Research Corporation.

Novak, P. T., Hoffman, D. L., & Yung, Y. F. (1998). Modeling the structure of the flow experience among web users, INFORMS Marketing Science and the Internet Mini-Conference, MIT.

Przybylski, A. K., Rigby, C. S., & Ryan, R. M. (2010). A motivational model of video game engagement. Review of General Psychology, 14(2), 154-166.

Rigas, G., Katsis, C. D., Ganiatsas, G., & Fotiadis, D. I. (2007). A User Independent, Biosignal Based, Emotion Recognition Method. Proceedings of the 11th international conference on User Modeling (UM '07), Springer-Verlag Berlin Heidelberg, 314-318.

Reddy, K. A., George, B., Mohan, N.M., & Kumar, V. J. (2009). A Novel Calibration-Free Method of Measurement of Oxygen Saturation in Arterial Blood. IEEE Transactions on Instrumentation and Measurement, 58(5), 1699-1705.

Shats, M.G. & Solomon, W.M. (2002). Experimental Evidence of Self-Regulation of Fluctuations by Time-Varying Flows. Physical Review Letters, 88(4), 045001-1-045001-4.

Shernoff, D. J., Csikszentmihalyi, M., Schneider, B., & Shernoff, E. S. (2003). Student engagement in high school classrooms from the perspective of flow theory. School Psychology Quarterly, 18(2), 158-176.

Steptoe, A., Wardle, J., & Marmot, M. (2005). Positive affect and health-related neuroendocrine, cardiovascular, and inflammatory processes. PANS, 102, 6508–6512.

Webster, J. G. (1997). Design of Pulse Oximeters. Philadelphia, PA: Inst Phys Pub.

Weibel, D., Wissmath, B., Habegger, S., Steiner, Y., & Groner, R. (2008). Playing online games against computer- vs. human-controlled opponents: Effects on presence, flow, and enjoyment. Computers in Human Behavior, 24(5), 2274-2291.

Zimmerman, B.J. & Schunk, D. H. (2001). Self-regulated Learning and Academic Achievement: Theoretical Perspectives. Mahwah, NJ: Lawrence Erlbaum Associates Publishers, 1-39.

Zimmerman, B. J. & Schunk, D. H. (1994), Self-regulated learning and performance. Hillsdale, NJ: Lawrence Erlbaum, 75-100.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top