跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 03:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳繼武
研究生(外文):Wu, Chi-Wu
論文名稱:植基於EEM技術的魚鮮度指標
論文名稱(外文):Evaluation index for fish freshness based on EEM analysis
指導教授:蕭子健蕭子健引用關係
指導教授(外文):Hsiao, Tzu-Chien
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:54
中文關鍵詞:螢光新鮮度
外文關鍵詞:fluorescencefreshness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:321
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:2
本篇論文主要是利用光學螢光量測來探討並分析魚肉之新鮮度並找出光學的指標,期許對於食品及工業上希望能有所貢獻與發展。相較於傳統新鮮度檢測方法,化學性判讀時間過長、易破壞魚體而造成漁業及食品業的損失,此種光學方法具有非侵入式檢測特性,並期望能達到快速檢測之目的。實驗選用兩種魚類,八隻澎湖縣養殖場的海鱺,平均重量約為5±1.0公斤,以及八隻新竹縣活魚餐廳的紅魽,平均重量約1±0.2公斤。檢測部分與方式係將活魚處理切成相同大小的魚肚及魚背,利用自行架設的螢光光譜量測系統來進行實驗,觀察死亡後24小時內魚體光譜的時序變化。同一時間亦進行魚新鮮度的傳統檢測法,利用商用高效能液相層析儀(HPLC)來進行定性及定量分析,以獲得傳統方法的新鮮度標準K值作為魚肉新鮮度標準。由螢光的激發放射矩陣光譜之結果顯示,在激發光330~360 nm、放射光400~500 nm之間有明顯的螢光訊號。此訊號的最大值位在螢光波長470 nm及430 nm處,與菸鹼醯胺腺嘌呤二核苷酸(NADH)及第一型和第五型膠原蛋白在激發光330~360 nm所產生的螢光光譜位置雷同。而根據正規化處理而獲得光學指數數值,以變異數分析此數值與死亡後24小時之關聯性,發現此數值隨著死亡後時間逐漸地降低,且具顯著性差異(p value<0.05),這表示可將此一數值視為另外一種新鮮度指標。由HPLC結果顯示,每隻紅魽的代謝變化速度皆不相同,推測原因可能是不同魚體差異性造成、環境及處理過程的差異性,因此會影響K值變化,推測也會影響魚體裡某些螢光成分的代謝。但整體結果來說光學指標與K值的數值大小大致呈負相關。而光學指標的高低結果也代表著魚死後肌肉所進行的僵直化及嫩化效應所造成的。是故,以目前的研究結果,此光學指標是可以用來判斷剛死亡的魚肉及生魚片的品質。
In this study, the autofluorescence emitted from fish tissue is measured as an optical evaluation index for freshness identification. Because of the time-consuming and invasive nature of the traditional method, it causes property loss in the fishery and food industries. A quick and noninvasive method is necessary. The result can be applied to the fishery and food industries for quality control. With the quickness of the fluorescence technique, it could improve the procedure of detection. The species chosen are eight cobias, which weigh 5±1.0 kilograms, from a marine products farm in Penghu and eight Seriola dumerili, which weigh 1±0.2 kilograms, from a seafood restaurant near Hsinchu Science Park. The fish were sliced at the abdomen and dorsum. Then, the fluorescence from the tissue was measured within 24 hours after the fish had died by using Y-type fiber. Meanwhile, traditional detection was employed by extracting ATP degradation products and calculating K value to confirm fish freshness. From the results of the Excitation-Emission matrix (EEM), the two peaks in excitation wavelength were 330 to 360 nm, and emission wavelengths were 400 to 500 nm. The two peaks were at the 470 nm and 430 nm emission wavelengths, respectively. It has been shown that the fluorescence indicates that the major contributors are from Nicotinamide adenine dinucleotide (NADH), collagen type I, and collagen type V. Analysis of variance (ANOVA) showed that the intensity of fluorescence decreases with refrigeration time (p value < 0.05). Also, the chemical result presents that there are different metabolism rates between different fish species. It is known that with different treatments and growing environments of fish can affect the K value and even the fluorophores in fish tissue. On the whole, the optical index is negatively correlated to the K value index. The value of the optical index is that it can measure the process of rigor mortis and the tenderization of fish muscle. The optical index can be applied to quality control for the freshness of fish fillet and sashimi.
摘 要 i
ABSTRACT iii
Acknowledgement v
Table of Content vi
List of Figures viii
List of Tables ix
I. Introduction 1
1.1. Background 1
1.1.1. Fishery issues in Taiwan 1
1.1.2. Biochemistry metabolism of fish tissue 2
1.1.3. The definition of K value 4
1.1.4. The history of developing freshness detection 4
1.2. Literature review 6
1.2.1. The principle of fluorescence technology 6
1.2.2. Fluorescence measurement of freshness 7
1.3. Objective 9
II. Material and Method 11
2.1. Experiment flow chart 11
2.2. Fish subject 12
2.2.1. Cobias 12
2.2.2. Seriola dumerili 12
2.3. Pretreatment for live fish 12
2.4. Optical fluorescence measurement 14
2.4.1. Measurement system 14
2.4.2. Measurement process 16
2.4.3. Measurement program and related parameters 16
2.4. Chemistry detection method for freshness 17
2.4.1 Chemistry reagents and instruments 18
2.4.1.1 Instruments 18
2.4.1.2 Chemicals and reagents 18
2.4.2 Chemistry method procedure 19
2.4.3 Recovery of extraction process 19
2.4.4 HPLC analysis 20
2.4.5 K value Calculation 22
2.5. Data Analysis 22
2.5.1. Excitation-Emission Matrix 22
2.5.2. Optical index 22
2.5.3. Time variant analysis for optical index 23
2.5.4. The relationship between optical index and K value 24
III. Experiment Result 25
3.1. Optical fluorescence results 25
3.1.1. The results for cobias 25
3.1.2. The results for Seriola dumerili 27
3.2. Chemical results for Seriola dumerili by HPLC 29
3.2.1. Recovery of ATP degradation products 29
3.2.2. The results by HPLC 30
3.2.3. The results of Seriola dumerili by HPLC 32
3.2.4. The K value of eight Seriola dumerili 34
3.3. The correlation between optical index and K value 35
IV. Discussion 38
4.1 The fluorophores of EEM spectra 38
4.2 The optical index G 39
4.3 The slaughter method effect for spectrum 40
4.4 The changes of other fluorophores in fish tissue within 24 hours refrigeration 41
4.5 The white and red fish meat 43
4.6 The problems in this study 44
4.7 To develop an portable detector for fish freshness 44
4.7.1. The potential of nitrogen laser as excitation power 44
4.7.2. The usage and problem of G index for freshness 45
V. Conclusion 46
5.1 The optical index represents 46
5.2 The application of the index 46
VI. Future Work 48
VII. Reference 49
Appendix A 52
Appendix B 53
[1] K. Sveinsdottir, E. Martinsdottir, G. Hyldig, B. Jørgenson, and K. Kristbergsson, “Application of quality index method (QIM) scheme in shelf-life study of farmed atlantic salmon (salmo salar)”, Sensory and Nutritive Qualities of Food, vol. 67, no. 4, pp. 1570-1579, May 2002.
[2] O.O. Cyprian, K. Sveinsdóttir, H. Magnússon and E. Martinsdóttir, “Application of quality index method (QIM) scheme and effects of short-time temperature abuse in shelf life study of fresh water arctic char (salvelinus alpinus)”, Journal of Aquatic Food Product Technology, vol. 17, no. 3, pp. 303-321, Oct. 2008.
[3] N. Hamada-Sato, K. Usui, T. Kobayashi, C. Imada, and E. Watanabe, “Quality assurance of raw fish based on HACCP concept”, Food Control, vol. 16, no.4, pp. 301-307, Apr. 2005.
[4] CNS1451,N6029,冷凍魚類檢驗法,經濟部標準檢驗局,台北,1991。
[5] T. Hattula and M. Kiesvaraa, “Breakdown products of adenosine triphosphate in heated fishery products as an indicator of raw materials freshness and of storage quality”, Food Science and Technology, vol. 29, no.1-2, pp. 135-139, 1996.
[6] J.M. Shewan, R.G. Macintosh, C.G. Tucker, and A.S.C. Ehrenberg, “The development of a numeric scoring system for the sensory assessment of the spoilage of wet white fish stored in ice”, Journal of the Science of Food and Agriculture, vol. 4, pp. 283-298, 1953.
[7] J.M. Ryder, “Determination of adenosine triphosphate and its breakdown products in fish muscle by high-performance liquid chromatography”, Journal of Agricultural and Food Chemistry, vol. 33, no. 4, pp. 678-680, 1985.
[8] T. Hatula, “Adenosine triphosphate breakdown products as a freshness indicator of some fish species and fish products”, Academic Dissertation, Department of Biochemistry in Helsinki University, 1997.
[9] N. Kato, M. Kunimoto, S. Koseki, S. Kitakami and K.I. Arai, “Freshness and quality of fish and shellfish”, Journal of the School of Marine Science and Technology, Tokai University, vol. 7, no. 2, pp. 87-99, 2009.
[10] A.A. Stratonnikov, V.S. Polikarpov, and V.B. Loschenov, “Photobleaching of endogenous fluorochroms in tissues in vivo during laser irradiation", Proceedings of SPIE, vol. 4241, 2001.
[11] L. Gil, J.M. Barat, I. Escriche, E. Garcia-Breijo, R. Martínez-Máñez, and J. Soto, “An electronic tongue for fish freshness analysis using a thick-film array of electrodes”, Microchim Acta, vol. 163, no. 1-2, pp. 121-129, 2008.
[12] N. Gokoglu and P. Yerlikaya, “Use of eye fluid refractive index in sardine (sardina pilchard us) as a freshness indicator”, European Food Research and Technology, vol. 218, no. 3, pp. 295-297, 2004.
[13] H. Okuma and E. Watanabe, “Flow system for fish freshness determination based on double multi-enzyme electrodes”, Biosensor and Bioelectronics, vol. 17, no. 5, pp. 367-372, May 2002.
[14] N.El Barbri, E. Llobet, N. El Bari, X. Correig, and B. Bouchikhi, “Application of a portable electronic nose system to assess the freshness of Moroccan sardines”, Materials Science and Engineering C, vol. 28, no. 5-6, pp. 666-670, Jul. 2008.
[15] Y. Nanjyo and T. Yao, “Rapid measurement of fish freshness indices by an amperometric flow-injection system with a 16-way switching valve and immobilized enzyme reactors”, Analytica Chimica Acta, vol. 470, no. 2, pp. 175-183, 2002.
[16] J.B. Luten, J. Oehlenschläger, and G. Olafsdottir (Eds.), Quality of fish from catch to consumer: labeling, monitoring and traceability, Wageningen Academic Publishers, The Netherlands, ISBN: 978-90-76998-14-5, pp. 211-224, 2003.
[17] H. Nilsen, M. Esaiassen, and F. Sigernes. “Visible/near-infrared spectroscopy: a new tool for the evaluation of fish freshness?”, Journal of Food Science, vol. 67, no. 5, pp. 1821-1826, Jun. 2002.
[18] S.C. Chu, T.C. Hsiao, C.Y. Wang, J.K. Lin, and H.H. Chiang, “Comparison of the performances of linear multivariate analysis method for normal and dyplasia tissues differentiation using autofluorescence spectroscopic”, IEEE Transactions on Biomedical Engineering, vol. 53, no. 11, pp. 2265-2273, Nov. 2006.
[19] Available from: http://www.physik.unibas.ch/Praktikum/VPII/Fluoreszenz/Fluorescence_and_ Phosphorescence.pdf.
[20] S.P. Aubourg and I. Medina, “Influence of storage time and temperature on lipid deterioration during cod (gadus morhua) and haddock (melanogrammus aeglefinus) frozen storage”, Journal of the Science of Food and Agriculture, vol. 79, no. 13, pp. 1943-1948, Sep. 1999.
[21] G. Duflos, F.B. Le, V. Mulak, P. Becel, and P. Malle, “Comparison of methods of differentiating between fresh and frozen-thawed fish or fillets”, Journal of the Science of Food and Agriculture, vol. 82, no. 12, pp. 1341-1345, Sep. 2002.
[22] E. Dufour, J.P. Frencia, and E. Kane, “Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of fish freshness”, Food Research International, vol. 36, pp. 415-423, 2003.
[23] E. Dufour, A. Letort, A. Laguet, A. Lebecque, and J.N. Serra, “Investigation of variety, typicality and vintage of French and German wines using front-face fluorescence spectroscopy”, Analytica Chimica Acta, vol. 563, no. 1-2, pp. 292-299, Mar. 2006.
[24] R. Karoui, E. Thomas, and E. Dufour, “Utilization of a rapid technique based on front-face fluorescence spectroscopy for differentiating between fresh and frozen–thawed fish fillets”, Food Research International, vol. 39, no.3, pp 349-355, Apr. 2006.
[25] C.M. Anderson and J.P. Wold, “Fluorescence of muscle and connective tissue from cod and salmon”, Journal of Agricultural and Food Chemistry, vol. 51, no. 2, pp. 470-476, 2003.
[26] 蔡佳玲,「收穫後處理與包裝對海鱺、吳郭魚與鱸魚品質與5℃儲藏期限之影響」,碩士論文,國立臺灣海洋大學,2006。
[27] N.P.L. Tuckey, M E. Forster, and S.P. Gieseg, “Effects of rested harvesting on muscle metabolite concentrations and K-values in chinook salmon (oncorhynchus tshawytscha) fillets during storage at 15 ◦C”, Journal of Food Science, vol. 75, no. 5, pp. 459-464, 2010.
[28] K. Sato, S. Uratsuji, M. Sato, S. Mochizuki, Y. Shigemura, M. Ando, Y. Nakamura, and K. Ohtsuki, “Effect of slaughter method on degradation of intramuscular type V collagen during short-term chilled storage of chub mackerel scomber japonicas”, Journal of Food Biochemistry, vol. 26, no. 5, pp. 415-429, Nov. 2002.
[29] M. Ando, Y. Yoshimoto, K. Inabu, T. Nakagawa, and Y. Makinodan, “Post-mortem change of three-dimensional structure of collagen fibrillar network in fish muscle pericellular connective tissues corresponding to post-mortem tenderization”, Fisheries Science, vol. 61, no.2, pp. 327-330, 1995.
[30] M.D. SUA´ Rez, M. Abad, T. Ruiz-Cara, J. D. Estrada, and M. Garcia-Gallego, “Changes in muscle collagen content during post mortem storage of farmed sea bream (sparus aurata): influence on textural properties”, Aquaculture International, vol. 13, no. 4, pp. 315–325, 2003.
[31] B. Roth, E. Slinde, and J. Arildsen, “Pre or post mortem muscle activity in atlantic salmon (salmo salar). The effect on rigor mortis and the physical properties of flesh”, Aquaculture, vol. 257, pp. 504-510, 2006.
[32] M. Tejada and A. Huidobro, "Quality of farmed gilthead seabream (sparus aurata) during ice storage related to the slaughter method and gutting", European Food Research and Technology, vol. 215, no. 1, pp. 1-7, 2002.
[33] C.W. Wu, T.C. Hsiao, S.C. Chu, H.H. Hu, and J.C. Chen, “Fibre optic fluorescence spectroscopy for monitoring fish freshness”, Proceedings of the SPIE, vol. 8220, 2012.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top