跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 17:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭奕君
研究生(外文):Kuo, Yi-Chun
論文名稱:具有溫度補償功能之非晶矽薄膜電晶體閘極驅動陣列電路技術研究
論文名稱(外文):Study on the integration of temperature compensation and gate driving circuits based on amorphous silicon TFT array technology
指導教授:劉柏村劉柏村引用關係
指導教授(外文):Liu, Po-Tsun
學位類別:碩士
校院名稱:國立交通大學
系所名稱:顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:78
中文關鍵詞:液晶顯示器系統面板薄膜電晶體
外文關鍵詞:LCDSystem-On-PanelTFT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
薄膜電晶體液晶顯示器(thin-film transistor liquid-crystal display,簡稱TFT-LCD)為現代顯示科技產品的主流,尤其應用於手機上,有輕巧、方便攜帶等特點。傳統的液晶顯示器顯示正確影像的方式是利用外部的驅動晶片來提供面板所需要的驅動電壓,近年來為了要達到輕巧、薄型化與降低生產成本的目標,系統整合式玻璃面板(SOG, System-on-glass)的概念陸續被提出,許多產品將面板周邊的電路直接製作在玻璃基板上,如閘極掃描驅動電路整合於液晶面板(gate driver on array, GOA)之技術。然而,TFT-LCD之畫素利用非晶矽薄膜電晶體(amorphous Silicon TFTs, 簡稱a-Si TFTs)作為開關,來控制顯示的畫面,而非晶矽薄膜電晶體之特性容易受溫度影響,其閘極在相同電壓下,溫度愈高,流經汲極與源極的電流愈大;相反的,溫度愈低,流經汲極與源極的電流愈小,所以溫度容易影響到顯示畫面的特性如對比度、Gamma曲線等。因此,如何使液晶顯示面板在不同的環境溫度下仍能具有良好的畫面品質,是很重要的課題。
在本篇論文中,提出一個玻璃基板上的溫度補償電路設計,此電路包含溫度感測器、多工器、電位移轉器電路並與GOA技術整合,藉由非晶矽薄膜電晶體之溫度特性設計出的溫度感測器能偵測環境溫度變化,進而推動GOA,使GOA輸出之閘極訊號可根據溫度變化而改變電位,即可以調整後的閘極訊號控制畫素之電晶體。此電路均以非晶矽薄膜電晶體作為電路的驅動元件,可實現顯示器周邊電路整合的應用。

Thin-film transistor liquid-crystal display (TFT-LCD) becomes a main stream for display technology in this generation. It features light weight, fine portability, especially for cellular phones. Traditional LCDs display the correct images by using external IC chips which provide the required driving voltage of panels. In recent years, the concept of system-on-glass panels is proposed progressively in order to achieve the goals of compact, thin and low cost displays. Many products integrate the peripheral circuits on the glass substrate such as the gate driver on array (GOA) technology. However, the pixels of TFT-LCD use amorphous Silicon TFTs (a-Si TFTs) as switch devices to control the images. The ambient temperature influences the electrical characteristics of a-Si TFTs. As the temperature increases, the TFTs turn on at a lower gate-source bias and the corresponding drain-source current level increases. On the contrary, as the temperature decreases, the TFTs turn on at a higher gate-source bias and the corresponding drain-source current level decreases. Therefore, the temperature influences the characteristics of the LCD panel, including the contrast ratio and gamma curve. The important subject is how to make the LCD panels with good image quality under various ambient temperatures.
In this thesis, the integration of on-glass temperature compensation circuit and GOA technology is proposed. The temperature compensation circuit comprises the temperature sensor, multiplexer and level shifter circuits. It detects the ambient temperature changes by the temperature sensor circuit which is designed based on the temperature characteristics of the a-Si TFTs and drives GOA. Then, GOA generates the gate pulse signals with the modulated levels associated with the temperature. In this way, the pixels can be controlled by the modulated gate pulse signals. The circuits directly use a-Si TFTs as the driving devices; and further, SOG application can be implemented.

Chinese Abstract I
English Abstract II
Acknowledgements IV
Contents V
Figure Captions VII
Table Captions XII

Chapter 1 Introduction
1.1 Background 1
1.1.1 Overview of Liquid Crystal Displays 1
1.1.2 Driving System of TFT-LCD Panel 2
1.1.3 System-on-Panel Displays 2
1.2 Motivation 3
1.3 Thesis Organization 4

Chapter 2 Experimental Flow and Electrical Characteristics of Amorphous Silicon Thin Film Transistor Device
2.1 Experimental Flow 10
2.2 Temperature Characterization of a-Si TFTs 10
2.3 Device Parameter Extraction of a-Si TFTs 11
2.4 Modeling for a-Si TFTs in HSPICE 13

Chapter 3 Highly Stable Gate Driver Circuit with Bi-Directional Scanning
3.1 Circuit Schematic and Operations 25
3.2 Simulation Results 27
3.3 Measurement Results and Discussions 28

Chapter 4 Integration of On-Glass Temperature Compensation Circuit and Gate Driver with Amorphous Silicon TFT Processes
4.1 Circuit Block of Temperature Sensor 43
4.1.1 Circuit Schematic and Operations 43
4.1.2 Simulation Results and Discussions 44
4.1.3 Measurement Results of Temperature Detection Circuit 45
4.2 Circuit Block of Level Shifter with Output Voltage Modulation 46
4.2.1 Charge Pump Type Multiplexer Circuit 46
4.2.1.1 Circuit Schematic and Operations 46
4.2.1.2 Simulation Results 48
4.2.2 Level Shifter Circuit 48
4.2.2.1 Circuit Schematic and Operations 48
4.2.2.2 Simulation Results 49
4.2.2.3 Measurement Results 50
4.3 Integration of Temperature Compensation and Gate Driving Circuits 50
4.3.1 Circuit Architecture 50
4.3.2 Simulation Results 51
4.3.3 Measurement Results 52

Chapter 5 Conclusions
5.1 Conclusions 74
5.2 Future Work 74

References 76

[1] S. M. Sze, Physics of Semiconductor Devices. :Wiley, 1981.
[2] Y. Kuo, Thin Film Transistors: Materials and Processes. Dordrectht, The Netherlands: Kluwer, 2004, vol. 1.
[3] Y.-H. Tai, Design and Operation of TFT-LCD Panels. :Wu-Nan Book, Inc., Apr. 2006.
[4] D. J. R. Cristaldi, S. Pennisi, and F. Pulvirenti, Liquid Crystal Display Drivers: Techniques and Circuits. :Springer, Mar. 2009.
[5] Y.-H. Tai, C.-C. Pai, B.-T. Chen, and H.-C. Cheng, “A source-follower type analog buffer using poly-Si TFTs with large design windows,” IEEE Electron Device Lett., vol.26, no.11, pp. 811–813, Nov. 2005.
[6] W.-J. Nam, J.-H. Lee, H.-J. Lee, H.-S. Shin, and M.-K. Han, “Peripheral circuit designs using low-temperature p-type poly-Si thin-film transistors,” Journal of Society for Information Display, vol. 14, no. 4, pp. 403–409, Apr. 2006.
[7] C.-W. Lin, T.-K. Chang, C.-K. Jan, M.-H. Hsieh, C.-Y. Tsai, S.-C. Chang, and Y.-M. Tsai “LTPS circuit integration for system-on-glass LCDs,” Journal of Society for Information Display, vol. 14, no. 4, pp. 353 – 365, Apr. 2006.
[8] T.-C. Lu, H.-W. Zan, and M.-D. Ker, “Temperature coefficient of poly-silicon TFT and its application on voltage reference circuit with temperature compensation in LTPS process,” IEEE Trans. Electron Devices, vol. 55, no. 10, pp. 2583–2589, Oct. 2008.
[9] Y.-C. Tarn, P.-C. Ku, H.-H. Hsieh, and L.-H. Lu, “An amorphous silicon operational amplifier and its application to 4 bit digital to analog converter,” IEEE J. Solid State Circuits, vol. 45, no. 5, pp. 1028–1035, May 2010.
[10] T. Osada, K. Akimoto, T. Sato, M. Ikeda, M.Tsubuku, J. Sakata, J. Koyama, T. Serikawa, and S. Yamazaki, “Development of driver-integrated panel using amorphous In-Ga-Zn-Oxide TFT,” SID Dig. Tech., 2009, pp. 184 – 187.
[11] J.-W. Choi, J.-I. Kim, S.-H. Kim, and J. Jang, “Highly reliable amorphous silicon gate driver using stable center-offset thin-film transistors,” IEEE Trans. Electron Devices, vol. 57, no. 9, pp. 2330–2334, Sep. 2010.
[12] C. Ng and A. Nathan, “Temperature characterization of a-Si:H thin-film transistor for analog circuit design using analog hardware description language modeling,” J. Vac. Sci. Technol., vol. 24, no. 3, pp. 883-887, May 2006.
[13] M.-D. Chun, S.-Y. Yoon, Y.-H. Jang, K.-S. Park, H.-Y. Kim, B. Kim, H.-N. Cho, S.-C. Choi, T.-W. Moon, N.-W. Cho, S.-H. Jo, C.-Y. Sohn, C.-D. Kim, and I.-J. Chung, “Bi-directional integrated a-Si gate driver circuit for LCD panel with RGBW quad subpixels,” Proc. of ASID’06, pp. 125-127, 2006.
[14] J.-H. Oh, J.-H. Hur, Y.-D. Son, K.-M. Kim, S.-H. Kim, E.-H. Kim, J.-W. Choi, S.-M. Hong, J.-O. Kim, B.-S. Bae, and J. Jang, “2.0 inch a-Si:H TFT-LCD with low noise integrated gate driver,” SID Dig. Tech., 2005, pp. 942–945.
[15] J. F. Dickson, “On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique,” IEEE J. Solid- State Circuits, vol. SC-11, no. 3, pp. 74–378, Jun. 1976.
[16] A. Nakashima, Y. Sagawa, and M. Kimura, “Thermal sensor using poly-Si thin-film transistor with widened detectable temperature range, ” IEEE Electron Device Lett., vol. 32, no. 3, pp. 333-335, Mar. 2011.
[17] T. Naiki and H. Taguchi, “Display Apparatus Having Temperature Compensation Function,” U.S. Patent 7 038 654, May 2, 2006.
[18] B.-S. Bae, J.-W. Choi, J.-H. Oh, and J. Jang, “Level shifter embedded in drive circuits with amorphous silicon TFTs,” IEEE Trans. Electron Devices, vol. 53, no. 3, pp. 494-498, Mar. 2006.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊