跳到主要內容

臺灣博碩士論文加值系統

(44.210.151.5) 您好!臺灣時間:2024/07/13 11:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳亭羽
研究生(外文):Ting-yu Chen
論文名稱:氣候變遷對桃園地區水稻產量及灌溉需水量之影響
論文名稱(外文):Impact of Climate Change on Paddy Rice Yields and Irrigation Water Requirement in Taoyuan
指導教授:吳瑞賢吳瑞賢引用關係
指導教授(外文):Ray-shyan Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:128
中文關鍵詞:氣候變遷、作物模式、水稻、灌溉需水量
外文關鍵詞:Irrigation water requirementRiceCrop modeClimate change
相關次數:
  • 被引用被引用:15
  • 點閱點閱:619
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氣候變遷會影響氣溫變化及降雨型態進而對農作物生長及其產量造成改變,目前對於氣候變遷於作物之影響大多使用作物生長模式做模擬及探討,作物生長模式有許多種,本研究所使用之作物模式為DSSAT(The Decision Support System for Agrotechnology Transfer)。本研究針對該作物模式所需之氣象資料建立其日氣象資料繁衍模式,配合作物模式推估未來桃園地區稻米一期作產量,探討其影響。而氣候變遷亦會對水田灌溉需水量造成影響,因此本研究利用DSSAT模式模擬之作物生長天數推估在未來狀況下,溫度及雨量的改變對於桃園地區稻米一期作灌溉需水量之變化。
在氣候變遷下,不考慮未來二氧化碳濃度變化直接影響,且耕種日期不變,利用DSSAT模式模擬桃園地區一期作稻米產量,模擬結果得知各情境之稻米一期作產量均有增加的趨勢,近未來(2020-2039年)之產量改變率介於0.52%至2.33%之間,遠未來(2080-2099年)之產量改變率介於2.84%至7.86%之間。利用DSSAT模式之生長天數推估未來灌溉需水量,模擬結果顯示,在大部分的情境下,桃園地區稻米一期作未來的灌溉需水量改變量不大,其原因是溫度上升會導致作物需水量增加造成灌溉需水量增加,但是溫度上升也會導致生長天數減少,進而使得灌溉需水量減少,進而抵銷增加之效應。
The change of temperature and rainfall patterns caused by climate change will change the growth and the yield of crops. Most of researches assess the impact of climate change on crops use the crop growth model. In this study, the Decision Support System for Agrotechnology Transfer (DSSAT) software package was used. For the weather data of input in DSSAT, the model to generating the weather data was proposed. Then, the impact of rice yield of the first period crop for the future in Taoyuan was assessed. Climate change also affects the irrigation water requirements of paddy rice. Therefore, this study estimates the change of the irrigation water requirement of the first period crop for the future in Taoyuan with growth stages.
Under climate change, without considering the direct impact of the future changes in the concentration of carbon dioxide, and the planting date remains the same, the results show that the production of rice has a trend to increase. The changing rates of the yield in the near future (2020-2039) range from 0.52% to 2.33%. While the changing rates of the yield in the far future (2080-2099) range from 2.84% to 7.86%. Under most climate scenarios, the change in irrigation water requirement is not obvious in the future. The reason is that on one hand, the rise in temperature leads to crop water requirement increase that caused the irrigation water requirement increase, but on the other hand, the rise in temperature leads to reduce the growth days that caused the irrigation water requirement reduce, and then offset the effect of increasing.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 IX
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 本文架構 2
1.4 研究流程 4
第二章 文獻回顧 5
2.1 日氣象資料相關研究 5
2.2 氣象因子影響作物產量相關研究 6
2.3 推估溫度方法 7
2.4 作物模式 8
第三章 理論分析 10
3.1 氣象合成模式(WGEN) 10
3.1.1日溫度模擬模式 10
3.1.2 日降雨量模擬模式 11
3.2 DSSAT模式簡介 12
3.2.1 DSSAT模式輸入資料 12
3.2.2 DSSAT參數設定 13
3.2.2.1 預先設定 14
3.2.2.2 作物種類設定 14
3.2.2.4 初始條件設定 14
3.2.2.5 試驗地區條件設定 14
3.2.2.6 耕種方式設定 14
3.2.2.7 灌溉管理設定 15
3.2.2.8 肥料施用設定 15
3.2.2.9 一般設定 15
3.2.2.10 模擬項目設定 15
3.2.2.11 模擬方法設定 15
3.2.2.12 管理方法設定 16
3.3 推估灌溉需水量模式 28
3.3.1 滲漏(PCi) 28
3.3.2 有效雨量(Pei) 30
3.3.3 湛水深(Di) 30
3.3.4 田面水平衡 31
3.3.5 作物需水量 32
3.3.6 作物係數 32
3.4 氣候變遷預設情境 33
3.5 檢定方法 40
3.5.1 迴歸參數檢定 40
3.5.2 模式驗證 40
3.5.2.1 平均絕對誤差 40
3.5.2.2 均方誤差 41
3.6 研究區域概述與基本資料 41
3.6.1氣象與水文環境 42
3.6.2研究灌區與土壤類別 42
3.6.3灌區之農作時期 45
3.6.4測站基本資料 45
第四章 結果與討論 47
4.1 日最高溫、日最低溫及日射量模式建立與驗證 47
4.2 未來產量推估 61
4.2.1 DSSAT模式之檢定及驗證 61
4.2.2 DSSAT模式溫度敏感度分析 62
4.2.3 DSSAT模式日射量敏感度分析 64
4.2.4 產量模擬結果分析 65
4.3 灌溉水量需求評估 69
4.3.1 不同氣候變遷情境下之灌溉需水量推估 69
4.3.2 不同氣候變遷情境下之灌溉需水量變化比較 74
第五章 結論與建議 81
5.1結論 81
5.2建議 82
參考文獻 83
附錄A 88
附錄B 100
附錄C 105
1.Bond, D. C., “Generating daily weather values by computer simulation techniques for crop yield forecasting models.”, USDA-ESCS, Statistical Research Division, 1979.
2.Bulut, H., Buyukalaca, O., Yilmaz, T., “New models for simulating daily minimum, daily maximum and hourly outdoor temperatures.”, Proceedings of the First International Exergy, Energy and Environment Symposium (IEEES-1),499-504, 2003.
3.Dorvlo, A. S. S., Ampratwum, D. B., “Technical note modelling of weather data for Oman.”, Renewable Energy, Vol.17 Issue 3:421-428, 1999.
4.Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E. et al. , “Maximum and minimum temperature trends for the globe.”, Science, vol.277:364-367, 1997.
5.Hsu, H.-H., Chen, C.-T., “Observed and projected climate change in Taiwan.”, Meteorology and Atmospheric Physics, vol.79:87-104, 2002.
6.Hunt, L. A., Kuchar, L., Swanton, C. J., “Estimation of solar radiation for use in crop modeling.”, Agricultural and Forest Meteorology,vol.91:293-300, 1998.
7.IPCC, “Climate Change 2007: The Physical Science Basis. The AR4 Synthesis Report.”, 2007.
8.Jansen, D. M., “Potential rice yields in future weather conditions in different parts of Asia.”, Netherlands Journal of Agricultural Science, Vol.38 No.4:661-680, 1990.
9.Jones, J. A., Colwick, R. F., Threadgill, E. D., “A simulated environmental model of temperature, evaporation, rainfall, and soil moisture.”, Transactions of the ASABE, vol.15 No.2:366-372, 1972.
10.Karl, T. R., Jones, P. D., Knight, R. W., Kukla, G., Plummer, N., Razuvayev, V. et al. , “A new perspective on recent global warming: Asymmetric trends of daily maximum and minimum temperature.”, Bulletin of the American Meteorological Society, vol.74 No.8:1007-1023, 1993.
11.Kukla, G., Karl, T. R., “Nighttime warming and the greenhouse effect.”, Environ. Sci. Technol., vol.27 No.8:1468-1474, 1993.
12.Larsen, G. A., Pense, R. B., “Stochastic simulation of daily climatic data.”, USDA-SRS, Statistical Research Division, 1981.
13.Nicks, A. D., Harp, J. F., “Stochastic generation of temperature and solar radiation data.”, Journal of Hydrology, vol.48:1-17, 1980.
14.Pickering, N. B., Stedinger, J.R., Haith, D.A., “Weather input for nonpoint source pollution models.”, Journal of Irrigation and Drainage Engineering, vol.114 No.4:674-690, 1988.
15.Richardson, C. W., Foster, G. R., Wright, D. A., “Estimation of erosion index from daily rainfall amount.”, Transactions of the ASABE, vol.26 No.1:153-156, 1983.
16.Ritchie, J. T., “A user-oriented model of the soil water balance in wheat. ”, Wheat Growth and Modeling, Plenum Publishing Corporation, USA,293-305, 1985.
17.Ritchie, J. T., “Model for predicting evapotranspiration from a row crop with incomplete cover.”, Water Resources Research , vol.8 No.5:1204-1213, 1972.
18.Salinger, M. J., “Southwest Pacific temperatures: trends in maximum and minimum temperatures. ”, Atmospheric Research, vol.37:87-99, 1995.
19.Sharma, K. L. S., Mahalanabis, A. K., “Modeling and prediction of the daily maximum temperature.”, IEEE Transactions on Systems, Man and Cybernetics, Vol.SMC-4 Issue 2:219-221, 1974.
20.Trenberth, K. E., Shea, D. J., “Relationships between precipitation and surface temperature.”, Geophysical Research Letters, vol.32 L14703:1-4, Doi:10.1029/2005GL022760, 2005.
21.Wu, R.-S., Haith, D. A.,“Land us, climate, and water supply”, Journal of Water Resources Planning and Management, vol.119 No.6:685-704, 1993.
22.Zhou, L., Dai, A., Dai, Y., Vose, R. S., Zou, C.-Z., Tian, Y. et al. , “Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004. ”, Climate Dynamics,vol.32 No.2-3:429-440, 2008.
23.Zhou, L., Dickinson, R. E., Dirmeyer, P., Dai, A., Min, S-K, “Spatiotemporal partterns of changes in maximum and minimum temperatures in multi-model simulations.”, Geophysical Research Letters, vol.36 L02702:1-6, Doi:10.1029/2008GL036141, 2009.
24.Zohrab, A. S., Hargreaves, G. H., Edgar Z. M., Keller, A. A., “Estimating crop yields form simulated daily weather data.”, American Society of Agricultural Engineers, vol.3 No.2:290-294, 1987.
25.王如意、易任,「應用水文學」,國立編驛館出版,1983。
26.台灣氣候變遷推估與資訊平台建置計畫(TCCIP)網頁,http://tccip.ncdr.nat.gov.tw/NCDR/main/index.aspx,2012。
27.行政院國家科學委員會,「台灣氣候變遷科學報告2011」,2011。
28.行政院農業委員會,「台灣農家要覽」,1985。
29.行政院農業委員會農糧署,「作物施肥手冊」,2005。
30.吳瑞賢、李明旭、陳世偉,「農業區地表水系統之模擬與推估」,農業工程學報,vol.57 No.1:76-91,2011。
31.李清縢,「台灣百年氣候趨勢特徵」,全球變遷通訊雜誌,No.59:23-26,2008。
32.周玫君,「氣候變遷及乾旱灌溉用水移用對水稻潛能產量影響」,國立台灣大學生物環境系統工程學研究所,碩士論文,2004。
33.林正錺、葉明智,「簡易氣象資料模式用於估算作物需水潛量之研究」,中華農學會報,新152:1-12,1990。
34.姚銘輝、陳守泓,「氣候變遷下水稻生長及產量之衝擊評估」,作物、環境與生物資訊,6:141-156,2009。
35.姚銘輝、陳述、漆匡時與蔡金川,「溫度估算日射量之可行性評估」,中華農業研究,51(4):73-83,2002。
36.姚銘輝、盧虎生、朱鈞、蔡金川,「DSSAT模式在預測水稻產量及氣候變遷衝擊評估之適用性探討」,中華農業研究,49(4):16-28,2000。
37.施嘉昌、徐玉標、曹以松、甘俊二,「灌溉排水原理」,1982。
38.洪念民,「氣候變遷對大安溪水資源營運之影響」,國立臺灣大學農業工程學研究所,碩士論文,1996。
39.許良瑋,「桃園埤塘輪灌系統之模擬分析」,國立中央大學土木工程研究所,碩士論文,2011。
40.連宛渝,「氣候變遷對台灣水稻灌溉需水量及潛能產量之影響」,國立台灣大學農業工程學研究所,碩士論文,2000。
41.郭怡婷,「台灣地區歷年溫差變化趨勢及其原因探討-以1954至2003年為例」,台南女子技術學院生活應用科學研究所,碩士論文,2005。
42.陳世偉,「區域多元化水資源調配之研究」,國立中央大學土木工程研究所,博士論文,2007。
43.陳琦玲、漆匡時、林正錺,「氣象預測模式之測試分析」,中華農會研究,40(3): 351-363,1991。
44.童慶斌,「氣候變化綱要公約國家通訊衝擊調適資料建制-氣候、水文、生態部分(一)」,行政院環保署報告書,2002。
45.童慶斌,「氣候變化綱要公約國家通訊衝擊調適資料建制-氣候、水文、生態部分(二)」,行政院環保署報告書,2003。
46.黃燕儀、翁叔平,「臺灣地區日較差的百年變畫(1901-2008)」,大氣科學,39(1):69-82,2010。
47.經濟部水利署,「氣候變遷水文環境風險評估研究(1/2)」,2010。
48.經濟部水利署水利規劃試驗所,「強化區域水資源永續利用與因應氣候變遷之調適能力(1/2)」,2007。
49.經濟部水利署水利規劃試驗所,「強化區域水資源永續利用與因應氣候變遷之調適能力(2/2)」,2008。
50.經濟部水資源局,「研擬合理農業灌溉用水標準(Ⅲ)及農業用水調配之可行性方案研究」,1997。
51.農發會,「嘉南地區水稻田灌溉率調查研究」,1981。
52.劉瑋婷,「溫度單位對水稻植株生育及產量之影響」,國立中興大學農藝研究所,碩士論文,1990。
53.魏綺瑪,「利用統計降尺度法推估石門水庫集水區未來情境降水研究」,國立成功大學水利及海洋工程研究所,碩士論文,2009。
54.蘇宗振,「氣候變遷下台灣糧食生產因應對策」,農政與農情,200:37-40,2009。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top