跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/18 07:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳琦錄
研究生(外文):Chi-Lu Chen
論文名稱:利用角解析光電子能譜術探測Ag/Au(111)系統中銀表面態受到光誘發的衰變情形
論文名稱(外文):Photon-induced deterioration of surface states of Ag/Au(111) analyzed with ARPES
指導教授:陸大安
指導教授(外文):Dah-An Luh
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:58
中文關鍵詞:氫原子吸附表面態角解析光電子能譜術擴散能障衰變
外文關鍵詞:ARPESsurface statedeteriorationdiffusion barrierchemisorption of hydrogen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去研究發現,金屬樣品在強烈的紫外光照射下會導致氫原子吸附在樣品表面。在本論文裡面,嘗試找出在薄膜系統中此衰變是否跟薄膜厚度有關。我們在Au(111)鍍上不同厚度的銀膜,而所探討的兩個系統分別是:1.6ML Ag/Au(111)跟2.65ML Ag/Au(111),並利用角解析光電子能譜術即時地量測表面態的變化。從樣品放在低溫持續照光一段時間跟升溫的實驗中,發現兩系統中低厚度的表面態比高厚度的表面態容易衰變(在1.6ML Ag/Au(111)系統中低厚度為1ML,2.65ML Ag/Au(111)系統中低厚度為2ML)。此實驗結果反應出表面態衰變跟研究系統中哪個薄膜厚度較低有關聯。為了解釋觀察到的現象,我們提出以Ehrlich-Schwoebel barrier為基礎的擴散機制來描述氫原子在階梯邊界附近的運動。
The surface states of metallic thin films were found to deteriorate under intense ultraviolet irradiation. The reason of deterioration is photon-induced chemisorption of hydrogen on the surface. In this thesis, we explored the possible thickness-dependence of this deterioration. Atomically flat Ag thin films of various thicknesses were grown on Au(111), and the studied systems were 1.6ML Ag/Au(111) and 2.65ML Ag/Au(111). The evolution of their surface states were monitored realtime with ARPES. In the experiment of putting samples under intense ultraviolet irradiation at low temperature for a period of time and annealing, the data show that the deterioration of surface state of low-coverage is more easier than the high-coverage one (the mentioned low coverage are 1ML and 2ML in 1.6ML Ag/Au(111) and 2.65ML Ag/Au(111), respectively). The results indicate that the film surface of lower coverage is more susceptible to the photon-induced deterioration. To explain the observed results, we propose a diffusion mechanism of hydrogen on silver surfaces based on the existence of the Ehrlich-Schwoebel barrier associated with the surface steps.
第一章  簡介..........................................1
第二章  背景..........................................2
2.1  光電子能譜術....................................2
2.2  三步驟模型......................................2
2.2.1  電子被入射光子激發................................2
2.2.2  被光激發的電子遷移到固體表面......................3
2.2.3  被光激發的電子從固體表面脫離到真空中..............4
2.3 表面態.........................................4
2.4 電子動能分佈曲線...............................7
2.5 角解析光電子能譜...............................8
2.6 晶體結構.......................................9
2.7 Ehrlich-Schwoebel barrier(簡稱E-S barrier).....9
2.8 曲線分析......................................10
第三章 儀器........................................18
3.1 簡介.........................................18
3.2 超高真空.....................................18
3.2.1 機械幫浦.......................................19
3.2.2 分子渦輪幫浦...................................19
3.2.3 冷凍幫浦.......................................19
3.2.4 離子幫浦.......................................20
3.2.5 鈦昇華幫浦.....................................20
3.2.6 非蒸氣式吸收幫浦...............................20
3.3 同步輻射光源.................................21
3.4 電子動能分析儀...............................22
3.5 蒸鍍槍.......................................22
3.6 濺鍍槍.......................................23
3.7 樣品加熱.....................................23
第四章 結果與討論..................................28
4.1 樣品製備.....................................28
4.2 實驗結果.....................................29
4.2.1 1.6ML Ag/Au(111) ..............................29
4.2.2 2.65ML Ag/Au(111) .............................31
4.3 討論........................................32
第五章 結論.......................................43
參考文獻..................................................44
[1] Dah-An Luh, Kuan-Chun Liu, Cheng-Maw Cheng and Ku-Ding Tsuei, Phys. Rev. B 81, 035427 (2010)
[2] C. N. Berglund and W. E. Spicer, Phys. Rev. 136, A1030–A1044 (1964)
[3] S. Hüfner, Photoelectron Spectroscopy: Principle and Application, Third edition, Springer (2003)
[4] P.M. Echenique and J.B. Pendry, J. Phys. C: Solid State Phys., Vol. 11 (1978)
[5] B. A. McDougall, T. Balasubramanian, and E. Jensen, Phys. Rev. B 51, 13891 (1995)
[6] Charles Kittel, Introduction to Solid State Physics, eighth edition, Wiley, 2005
[7] G. Ehrlich and F.G. Hudda, J. Chem. Phys. 44 (1966) 1039.
[8] R.L. Schwoebel and E.J. Shipsey, J. Appl. Phys. 37 (1966) 3682
[9] 真空技術與應用,行政院國家科學委員會精密儀器發展中心出版,民國90年
[10] Basic Vacuum Practice, Third Edition, Varian Inc. Lexington, 1992
[11] http://www.nsrrc.org.tw/chinese/index.aspx, NSRRC
[12] 黃志豪,”Epitaxial growth of thin Cu films on Ag(111) studied with ARPES“,國立中央大學物理所,碩士論文,民國99年
[13] F. Reinert, G. Nicolay, S. Schmidt, D. Ehm, and S. Hüfner, Phys. Rev. B 63, 115415 (2001).
[14] H. Cercellier, C. Didiot, Y. Fagot-Revurat, B. Kierren, L. Moreau, D. Malterre, and F. Reinert, Phys. Rev. B 73, 195413 (2006)
[15] Cheng-Maw Cheng, Ku-Ding Tsuei, Chi-Ting Tsai, and Dah-An Luh, Appl. Phys. Lett. 92, 163102 (2008)
[16] R. Paniago, R. Matzdorf, G. Meister, and A. Goldmann, Surface Science 336, 113 (1995)
[17] Geunseop Lee and E. W. Plummer, Phys. Rev. B 51, 7250 (1995)
[18] S. Ogura, K. Fukutani, M. Wilde, M. Matsumoto, T. Okana, M. Okada, T. Kasai, and W. A. Diño, Surf. Sci. 566-568, 755 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top