跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/17 04:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳欣倫
研究生(外文):Hsin-Lun Wu
論文名稱:整合動靜態視覺資訊的前車停止與啟動偵測
論文名稱(外文):Stop-and-go Detection using Dynamic and Static Vision Clues
指導教授:曾定章曾定章引用關係
指導教授(外文):Din-Chang Tseng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:77
中文關鍵詞:角點偵測光流前車停止與啟動
外文關鍵詞:corner detectionstop-and-gooptical flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
由於人口集中導致市區內車流量日益升高,造成在都市內行車有較多的不便與危險。在本研究中,我們針對以下情況做安全偵測。在都市行駛車輛時會有不少的時間是在等待交通號誌的變換或是在走走停停的擁擠車陣中,而在等待交通號誌或是塞車的這段時間,駕駛人可能會分心或做其他事情,若此時前方車輛已往前駛離或是停止,駕駛者若沒注意可能就會造成不便或碰撞。在本研究中,我們提出前車停止與啟動偵測的方法,可幫助駕駛者了解前車的動向,在發生危險之前告知駕駛人,使駕駛更為方便及安全。在前車停止與啟動偵測的方法中,先偵測角點,利用角點做光流向量的估計,根據光流向量長度以及方向做分區域篩選光流的動作,並將物體在同一平面上的光流向量調整成為大小差不多的向量,得到動態資訊後,整合動靜態資訊將光流向量分群得到移動區塊,最後將移動區塊加入追蹤的技巧判斷前車是否啟動或停止。前車停止啟動偵測的方法中,能避免己車前方與側方各方向汽機車與行人之影響、行駛在彎區道路、夜間側後方來車大燈造成前方車亮度變化、夜間各種燈光造成的明暗變化、雨天之雨刷擺動、陰晴變化等因素所造成的誤判,給予駕駛人正確的警示。
前車停止與啟動偵測的方法在Intel Pentium Core2 Duo 1.86GHz及2GB RAM的個人電腦上執行,可達每秒150至160張畫面,正確率可達95%。
Due to the concentration of population in cities, the traffic flow of the urban area is progressively growing and then more collision and accidents are raised. In this study, we design a safty detection which is focused on the following cases. When driving in cities, drivers will spend much time waiting for the transformation of the traffic signal or sticking in traffic jam. During the transformation of the traffic signal or sticking in traffic jam, if the front of the vehicle forward to leave or stop, the driver do not pay attention may cause inconvenience or collision. For the safety of drivers, the stop-and-go detection method is proposed in this study. In the stop-and-go detection method, corners are used as features to calculate optical flow. According to length and direction of the optical flow, we use different methods to filter optical flow in different regions and adjust the length of optical flow. After obtaining the dynamic information, integrating static information into dynamic information for clustering optical flows to get moving blocks. Finally, we use these moving blocks by the tracking skill to judge whether the front vehicle is stopping or going. This detection method can also avoid the effects of vehicles in different direction, variant weather, and the light at nighttime.
The proposed methods are evaluated in several variant environments. The detection rate of stop-and-go method is 95% and the frame rate is 150 to 160 frames per second.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 研究動機 1
1.2 系統架構 2
1.3 論文架構 5
第二章 相關研究 6
2.1 前車停止與啟動偵測 6
2.2 障礙物偵測 9
2.3 角點偵測 19
第三章 特徵擷取與光流向量估計 24
3.1 角點偵測 24
3.2 光流向量估計 25
第四章 前車停止與啟動偵測 27
4.1 偵測區域設定 27
4.2 光流向量篩選與調整 29
4.2.1 光流向量篩選 30
4.2.2 光流向量調整 34
4.3 光流向量結合色彩資訊的分群 38
4.3.1 光流向量分類 38
4.3.2 定義光流向量的顏色資料結構 40
4.3.3 濾除地面標誌光流 43
4.3.4 結合色彩資訊的光流分群 43
4.4 多重群聚區塊中的重疊區塊處理 47
4.5 時間序列中各區塊的一致性分析 49
第五章 實驗 51
5.1 實驗環境 51
5.2 篩選光流方法結果比較 51
5.3 分群方法結果比較 55
5.4 前車停止與啟動偵測結果 57
5.4.1 前車停止偵測 57
5.4.2 前車啟動偵測 64
5.5 實驗效能分析 70
第六章 結論與未來展望 72
6.1 結論 72
6.2 未來展望 73
參考文獻 74
[1] Bab-Hadiashar, A. and D. Suter, "Robust total least squares based optical flow computation," in Proc. Asian Conf. on Computer Vision, Hong Kong, China, Jan.8-10, 1998, pp.566-573.
[2] Beaudet, P. R., "Rotationally invariant image operators," in Proc. 4th Int. Conf. on Pattern Recognition, Kyoto, Japan, Nov.7-10, 1978, pp.579-583.
[3] Bertozzi, M. and A. Broggi, "GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection," IEEE Trans. on Image Processing, vol.7, no.1, pp.62-81, 1998.
[4] Bertozzi, M., A. Broggi, P. Medici, P. P. Porta, and A. Sjogren, "Stereo vision-based start-inhibit for heavy goods vehicles," in Proc. IEEE Intelligent Vehicles Symp. , Tokyo, Japan, Jun.13-15, 2006, pp.350-355.
[5] Bouguet, J. Y., Pyramidal Implementation of the Lucas Kanade Feature Tracker Description of The Algorithm, Technique Report, Intel Corporation Microprocessor Research Labs., 2003.
[6] Deriche, R. and G. Giraudon, "Accurate corner detection: an analytical study," in Proc. 3rd Int. Conf. on Computer Vision, Osaka, Japan, Dec.4-7, 1990, pp.66-70.
[7] Enkelmann, W., "Obstacle detection by evaluation of optical flow fields from image sequences," Image and Vision Computing, vol.9, no.3, pp.160-168, 1991.
[8] Gandhi, T. and M. M. Trivedi, "Parametric ego-motion estimation for vehicle surround analysis using an omnidirectional camera," Machine Vision and Applications, vol.16, no.2, pp.85-95, 2005.
[9] Gandhi, T. and M. M. Trivedi, "Vehicle surround capture: survey of techniques and a novel omni-video-based approach for dynamic panoramic surround maps," IEEE Trans. on Intelligent Transportation Systems, vol.7, no.3, pp.293-308, 2006.
[10] Harris, C. and M. Stephens, "A combined corner and edge detector," in Proc. 4th Alvey Vision Conf. , Manchester, UK, Aug.30-Sep.2, 1988, pp.147-152.
[11] Hoiem, D., A. A. Efros, and M. Hebert, "Putting objects in perspective," Int. Journal of Computer Vision, vol.80, no.1, pp.3-15, 2008.
[12] Horn, B. K. P. and B. G. Schunck, "Determining optical flow," Artificial Intelligence, vol.17, pp.185-203, 1981.
[13] Inoue, O., A. Seonju, and S. Ozawa, "Following vehicle detection using multiple cameras," in Proc. Int. Conf. on Vehicular Electronics and Safety, Columbus, OH, Sep.22-24, 2008, pp.79-83.
[14] Jin, J.-S., Z. Zhu, and G. Xu, "A stable vision system for moving vehicles," IEEE Trans. on Intelligent Transportation Systems, vol.1, no.1, pp.32-39, 2000.
[15] Jones, W. D., "Keeping cars from crashing," IEEE Spectrum, vol.38, no.9, pp.40-45, 2001.
[16] Kim, S. Y., S. Y. Oh, J. K. Kang, Y. W. Ryu, K. S. Kim, and S.C. Park, "Front and rear vehicle detection and tracking in the day and night times using vision and sonar sensor fusion," in Proc. IEEE/RSJ Int. Conf. on Intelligent Robot and System, Alberta, Canada, Aug.2-6, 2005, pp.2173-2178.
[17] Kitchen, L. and A. Rosenfeld, "Gray level corner detection," Pattern Recognition Letters, vol.1, no.2, pp.95-102, 1982.
[18] Lan, Y.-K., Stop-and-go and Top-view Obstacle Detection based on Dynamic Vision, Master thesis, Institute of Computer Science and Information Engineering, National Central University, Chungli, Taiwan, 2010.
[19] Lowe, G., "Distinctive image features from scale-invariant keypoints," Int. Journal of Computer Vision, vol.60, no.2, pp.91-110, 2004.
[20] Lucas, B. D. and T. Kanade, "An iterative image registration technique with an application to stereo vision," in Proc. Int. Joint Conf. on Artificial Intelligence, Vancouver, Canada, Aug.24-28, 1981, pp.674-679.
[21] Marquardt, D., "An algorithm for least-squares estimation of nonlinear parameters," SIAM Journal on Applied Mathematics, vol.11, pp.431-441, 1963.
[22] Moravec, H., "Towards automatic visual obstacle avoidance," in Proc. Int. Joint Conf. on Artificial Intelligence, Cambridge, MA, Aug.22-25, 1977, pp.584.
[23] Ogale, A. S., C. Fermuller, and Y. Aloimonos, "Motion segmentation using occlusions," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.27, no.6, pp.988-992, 2005.
[24] Oniga, F. and S. Nedevschi, "Processing dense stereo data using elevation maps- road surface, traffic isle, and obstacle detection," IEEE Trans. on Vehicular Technology, vol.59, no.3, pp.1172-1182, 2010.
[25] Rosten, E. and T. Drummond, "Fusing points and lines for high performance tracking," in Proc. 10th IEEE Int. Conf. on Computer Vision, Beijing, China, Oct.17-20, 2005, pp.1508-1515.
[26] Saxena, A., S. H. Chung, and A. Y. Ng, "3-D depth reconstruction from a single still image," Int. Journal of Computer Vision, vol.76, no.1, pp.53-69, 2008.
[27] Shi, J. and C. Tomasi, "Good features to track," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Seattle, WA, Jun.21-23, 1994, pp.593-600.
[28] Sotelo, M. A., J. Barriga, D. Fernández, I. Parra, J. E. Naranjo, M. Marrón, S. Alvarez, and M. Gavilán, "Vision-based blind spot detection using optical flow," Lecture Notes in Computer Science, vol.4739, pp.1113-1118, 2007.
[29] Trajkovic, M. and M. Hedley, "Fast corner detection," Image and Vision Computing, vol.16, no.2, pp.75-87, 1998.
[30] Wang, H. and J. M. Brady, "Real-time corner detection algorithm for motion estimation," Image and Vision Computing, vol.13, no.9, pp.695-703, 1995.
[31] Wang, J., G. Bebis, and R. Miller, "Overtaking vehicle detection using dynamic and quasi-static background modeling," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, CA, Jun.20-26, 2005, pp.64-71.
[32] Wu, B.-F., C.-J. Chen, H.-H. Chiang, H.-Y. Peng, J.-W. Ma, and T.-T. Lee, "The design of an intelligent real-time autonomous vehicle, Taiwan iTS-1," Journal of the Chinese Institute of Engineerings, vol.30, no.5, pp.829-842, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top