跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/18 13:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林恩弘
研究生(外文):En-Hung Lin
論文名稱:利用經驗模態分解法於耳鳴病患之腦磁波穩態聽覺誘發磁場萃取
論文名稱(外文):Extraction of MEG steady-state auditory evoked field in tinnitus patient using empirical mode decomposition (EMD)
指導教授:李柏磊
指導教授(外文):Po-Lei Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:58
中文關鍵詞:經驗模態分解法耳鳴腦磁波穩態聽覺誘發磁場
外文關鍵詞:tinnitusMEGempirical mode decomposition (EMD)steady-state auditory evoked field
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由多通道的腦磁波儀記錄穩態聽性誘發之腦磁波,來探討耳鳴患者在接受規律聲音刺激時大腦神經活化的能量變化與正常人之差異。本研究在台北榮民總醫院收取共10位受測者(5名耳鳴患者、單耳耳鳴),年齡介於22到50歲(平均年齡33歲),皆為右撇子。MEG實驗在具有磁場遮蔽效應(magnetically shielded) 與噪音屏蔽的檢查室中進行,取樣頻率為1000Hz。實驗分別對左耳及右耳做刺激,受試者先做純音刺激實驗,確保受測者聽力在可接受範圍之內,再做穩態聲音刺激實驗,刺激聲音材料使用帶有37Hz 調變之1000Hz聲頻。我們將MEG收取的資料使用經驗模態分解法拆成數個IMF,並把每個IMF作頻譜轉換,挑選含有誘發資訊(37Hz)的IMF做觀察。我們發現正常人的穩態聽覺誘發有以下幾種情形:1.右半腦能量總是大於左半腦、2.對側耳刺激時能量較強。耳鳴患者與正常人對比則沒有上述兩條規律,我們猜測與耳鳴造成大腦皮質可塑性(plasticity)的不正常放電有關,另外從大腦皮質的誘發之區域比正常人廣泛,則可推測因為耳鳴使得某些大腦神經元壞死,進而引發周圍大腦的過度補償之可能。
This dissertation adopted multi-channel MEG to study the steady-state auditory evoked field (SSAEF) responses in tinnitus patients. In this study, 10 right-handed subjects (5 single-side tinnitus patients), aged from 22 to 50 years (mean age at 33 years) were recruited. MEG experiments were performed in a sound-proof magnetic shielding room. MEG data were recorded at 1000 Hz sampling rate. Auditory stimuli were given to subject’s left ear and right ear separately. Preceding the SSAEF study, pure tone stimulations were given to each subject to ensure the sound loudness was within subject’s acceptable range. The stimulation material of SSAEF was 1000Hz sound modulated by 37 Hz modulation frequency. MEG data were segmented into epochs and decomposed by empirical mode decomposition (EMD) into several intrinsic mode functions (IMF). Task-related IMFs with 37Hz information were identified to reconstruct noise-suppressed SSAEFs. In this study, we found the SSAEFs have the following characteristics in normal subjects: 1. right brain energy is always greater than the left hemisphere, and 2. Greater responses induced by contralateral auditory stimulation. Neverthelss, no similar finding was concluded in tinnitus patients. We guess it is caused by cerebral cortex plasticity, it makes the brain not normal discharge. And We also found disinhibition of SSAEF response in affected side (tinntus ear), it might caused by the some reason.
電子檔授權書 I
摘要 II
Abstract III
致謝 IV
圖目錄 VI
表目錄 VIII
第一章 序論 1
1.1 前言 1
1.2 研究動機 2
1.3 聽覺生理介紹 3
1.4 耳鳴理論與文獻回顧 7
第二章 腦磁波量測與聽性穩態磁場 12
2.1 腦波量測 12
2.2 腦磁波儀 14
2.3 純音刺激 15
2.4 穩態聲音刺激 16
2.5 聽性穩態磁場 21
2.6 經驗模態分解法 22
第三章 實驗方法 26
3.1 受測者 26
3.2 實驗設計 26
3.3 訊號處理 27
3.4 訊號處理結果 30
第四章 結果與討論 36
第五章 未來展望 46
參考文獻 48
1.謝昌成,黃俊豪,劉鎮嘉(2007);耳鳴.基層醫學,第二十二卷第九期:317–323.
2.C.P. Lanting, E. de Kleine, P. van Dijk, Neural activity underlying tinnitus generation: Results from PET and fMRI. Hear, 2009; 255(I-2): I-I3.
3.H. Bartels, M.J. Staal, F.W. Albers, Tinnitus and neural plasticity of the brain. Otol Neurotol, 2007; 28(2):178–184.
4.P.J. Jastreboff, Neurosci. 1990, Aug: 221–254.
5.D.M. Baguley, Mechanisms of tinnitus. Br Med Bull 2002; 63:195-212.
6.陳玉祥(2002),噪音傷害之耳蝸功能保護─生長激素對噪音傷害後毛細胞的影響-動物實驗;行政院國家科學委員會輔助專題研究計畫成果報告.
7.S. Dehmel, Y.L. Cui, S.E. Shore, Cross-modal interactions of auditory and somatic inputs in the brainstem and midbrain and their imbalance in tinnitus and deafness. 2008, Dec; 17(2) :S193–S209.
8.W. Mu¨hlnickel, T. Elbert, E. Taub, H. Flor. Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA. 1998; 95:10340–10343.
9.A.R Samuel, R.J. Savi, R.F. Burkard, M.L. Coad, D.S. Wack, P. J. Galabtowicz, A.H. Lockwood. Brain imaging of the effect of lidocaine on tinnitus. Hearing Research. 2002. 171: p.43–50.
10.W. Schlee, N. Weisz, O. Bertrand, T. Hartmann, T. Elbert. Using Auditory Steady State Responses to Outline the Functional Connectivity in the Tinnitus Brain. Res. 2008,PLoS ONE 3(11): e3720.
11.R. Galambos, S. Makeig, P.J.Talmachoff. A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 1981; 78: 2643–7.
12.G. Rance, R.C. Dowell , F.W Rickards. Steady state evoked potential and behavioural hearing thresholds in a group of children with absent click evoked auditory brainstem response. Ear Hear, 1998, 19:48 61
13.O.G Lins, T.W Picton, B.L Boucher. Frequency specific audiometry using steady state responses. Ear Hear, 1996,17:8196.
14.C. Wienbruch, I. Paul, N. Weisz, T. Elbert, L.E. Roberts. Frequency organization of the 40-Hz auditory steady-state response in normal hearing and in tinnitus. Neuroimage. 2006 Oct 15;33(1):180-94. Epub 2006 Aug 9.
15.E. Diesch, M. Struve, A. Rupp, S. Ritter, M. Hülse., Enhancement of steady-state auditory evoked magnetic fields in tinnitus. European Journal of Neuroscience, 2004, 19: 1093–1104.
16.R. Bernhard, A Novel Type of Auditory Responses: Temporal Dynamics of 40-Hz Steady-State Responses Induced by Changes in Sound Localization. J Neurophysiol , 2008, 100:1265-1277.
17.W.S. De, C.S. Yu, C.B. Hung, Survey on the Development of Empirical Mode Decomposition and Issue Analysis.
18.N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung and H. H. Liu, The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non- stationary Time Series Analysis. Proc. R. Soc. Lond. A, vol. 454, 1998, pp. 903- 995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top