跳到主要內容

臺灣博碩士論文加值系統

(100.26.176.111) 您好!臺灣時間:2024/07/16 14:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許宏碩
研究生(外文):Hung-Shuo Hsu
論文名稱:近場電紡絲技術應用於可控制多根奈米纖維生成、選擇性沉積及奈米流道之製備
論文名稱(外文):Application of near-filed electrospinning in controlled formation of multiple jets, selective nanofiber deposition and fabrication of monolithic polymer nanofluidic channels
指導教授:傅尹坤傅尹坤引用關係
指導教授(外文):Yiin-Kuen Fuh
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:40
中文關鍵詞:近場電紡絲技術奈米流體流道選擇性沉積多根纖維生成
外文關鍵詞:Near-field electrospinning (NFES)Nanofluidic channelSelective depositionFormation of multiple jets
相關次數:
  • 被引用被引用:0
  • 點閱點閱:405
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在近場電紡絲技術中,研究纖維的形成、發展控制技術以及應用,主要重點為(1)近場電紡絲技術中可控制的多根奈米纖維生成及奈米纖維沉積,(2)利用微機電系統所製作出的結構增強近場電紡絲技術的選擇性沉積,(3)經由近場電紡絲技術所生產的奈米纖維作為犧牲模板,製作陣列的奈米流體流道。

(1)近場電紡絲技術中可控制的多根奈米纖維生成技術
我們在連續近場電紡絲 (Near-field Electrospinning, NFES) 製程中發展一種簡單且可控制多條射流形成技術,能有效的同時射出一、二和三條的奈米纖維。此研究中成功的展示在連續近場電紡絲製程中,使用機械力拉伸和直寫 (direct-write) 在收集器 (基板) 的方法來控制多條射流形成。其觸發機制為使用一或多個鎢探針針尖去戳聚合物液滴,當應用的電場超過帶電的聚合物液滴表面張力,則奈米纖維開始拉伸,接著在距離500 μm到1 mm (針頭到收集器) 的基板上開始沉積。奈米纖維直徑範圍為40到140 nm,經由一條、二條和三條射流所生產的奈米纖維,平均尺寸和變異範圍分別為: 64 ± 14 nm、79 ± 15 nm和76 ± 20 nm。此技術可進一步發展成大面積沉積纖維,如在微電子領域沉積有序奈米纖維的不織布、微機電系統結構和奈米結構的組織工程支架。

(2)利用微機電系統製作的結構增強近場電紡絲技術的選擇性沉積
這篇研究利用微機電系統 (Micro-Electrical Mechanical System, MEMS) 方法製作的微結構,增強近場電紡織技術所生產纖維的選擇性沉積。我們使用微米尺度範圍的六角錐形狀MEMS結構作為基板,沉積奈米纖維。並以有限元素 (Finite Element Method, FEM) 進行模擬(COMSOL 4.0),模擬之主要條件包含施加電壓800 V,針頭與微結構收集器為500 μm,並將微結構作正反擺放模擬電場效應。模擬結果與實際近場電紡織技術製作奈米纖維之集中電場效應吻合。

(3)經由近場電紡絲技術所生產的奈米纖維作為犧牲模板,製作陣列的奈米流體流道
這篇研究提出了一種簡單無光罩的方法製作陣列的奈米流體流道,利用近場電紡織技術沉積奈米纖維作為模板與聚二甲基矽氧烷 (polydimethylsiloxane, PDMS) 翻模技術。製備奈米流道通過三個主要步驟: (1)使用近場電紡織技術直寫陣列的奈米纖維在矽基板上,(2)陣列的奈米纖維圖案利用PDMS翻模,(3)使用O2 plasma表面改質,增加PDMS與基板黏合的黏結力。這篇研究中所製作的奈米流道寬度範圍為500 nm – 1300 nm,深度為70 - 500 nm。奈米流道尺寸主要依據奈米纖維直徑尺寸,近場電紡織技術能夠控制直徑~50 nm的奈米纖維。結果顯示,整合近場電紡絲技術可在低成本下快速的製作陣列奈米流道,而奈米流道圖形與尺寸主要由近場電紡織的直寫與定位方法控制。
This paper mainly research formation of nanofiber, controlled technology and application in near-field electrospinning. The focus of the study is (1) Controlled formation of multiple jets and nanofibers deposition via near-field electrospinning process, (2) MEMS/NEMS-enhanced selective nanofiber deposition via near-field electrospinning, (3) Fabrication of monolithic polymer nanofluidic channels via near-field electrospun nanofibers as sacrificial templates.

(1) Controlled formation of multiple jets and nanofibers deposition via near-field electrospinning process.
A simple yet powerful technique to form multiple jets using continuous near-field electrospinning (NFES) has been developed, and it can effectively create one, two and three nanofibers deposition in a controlled manner. In this study, we successfully demonstrate controlled formation of multiple jets using the mechanical drawing and direct-write on the collector via continuous NFES process. The triggering mechanism of proposed electrospinning process is using one or several tungsten probe tips to poke the polymer droplet, and when the surface tension of charged polymer solution is surpassed by applied electrical fields, the nanofibers are initially stretching and controllably depositing on the substrate at a needle-to-collector distance of 500 μm to 1 mm. The deposited nanofibers have diameters in the range of 40 to 140 nm, which arithmetic means and variances range from 64 ± 14 nm for one jet, 79 ± 15 nm for two jets and 76 ± 20 nm for three jets. This novel and reproducible technique can further expand the application of NFES in building up large area such as ordered nonwoven nanofibers in the field of microelectronics, MEMS structures and nano-featured scaffolds of tissue engineering.

(2) MEMS enhanced selective nanofiber deposition via near-field electrospinning.
MEMS structure with pyramidal cross-section and hexagonal shapes is first used to deposit nanofibers in micron meter range. A microstructure places front- and back- side to simulate electric field effect via finite element method (FEM) simulation (COMSOL 4.0) under applied voltage at 800 V and needle-to-collector at 500 μm. The simulation and experimental results are found in good in agreement.

(3) Fabrication of monolithic polymer nanofluidic channels via near-field electrospun nanofibers as sacrificial templates.
This paper reports a facile and maskless method for fabricating nanofluidic channel arrays using near-field electrospinning (NFES) templates with prescribed patterns and the polydimethylsiloxane (PDMS) molding technique. Nanochannels were fabricated monolithically through three main steps: (1) direct-writing nanofiber arrays onto a silicon substrate using NFES, (2) PDMS molding of the prescribed nanofibers patterns, and (3) plasma treating PDMS substrate to promote the adhesion and bonding process. The nanochannels fabricated in this study had channel widths ranging from 500 nm – 1300 nm and depths of 70 - 500 nm, and were patterned in a fashion similar to the wire bonding process routinely used in the semiconductor industry. The nanochannel dimensions were predominately dictated by electrospun nanofibers, showing that NFES is capable of depositing nanofibers with a diameter down to ~50 nm. Results show that reliable and repeatable nanofluidic channel arrays were speedily fabricated at a very low cost, while nanofluidic patterns and dimensions are predominantly controlled by NFES in a direct-write, addressable manner.
摘要 I
Abstract III
誌謝 VI
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 電紡絲技術 1
1-2 利用微機電系統製作的結構增強近場電紡絲技術的選擇性沉積 2
1-3 奈米流體流道 2
1-4 論文架構 5
第二章 多根奈米纖維生成技術 6
2-1導論 6
2-2實驗 7
2-2-1 電紡絲溶液 7
2-2-2 電紡絲設備架構 7
2-3結果與討論 8
第三章 選擇性沉積 14
3-1 實驗 14
3-1-1 電紡絲設備架構 14
3-1-2 收集器 14
3-2結果與討論 15
第四章 奈米流體流道製備 18
4-1實驗 18
4-1-1 電紡絲溶液 18
4-1-2 電紡絲設備架構 18
4-1-3 翻模 18
4-1-4 黏合/封裝 19
4-2結果與討論 19
第五章 結論 27
5-1近場電紡絲技術中可控制的多根奈米纖維生成技術 27
5-2 利用微機電系統製作的結構增強近場電紡絲技術的選擇性沉積 27
5-3經由近場電紡絲技術所生產的奈米纖維作為犧牲模板,製作陣列的奈米流體流道 28
參考文獻 29
附錄 36
[1]I. S. Yeo, J. E. Oh, L. Jeong, T. S. Lee, S. J. Lee, W. H. Park and B. M. Min, “Collagen-based biomimetic nanofibrous scaffolds: Preparation and characterization of Collagen/Silk fibroin bicomponent nanofibrous structures,” Biomacromolecules, 9, 1106-1116, 2008.
[2]Q. P. Pham, U. Sharma, and A. G. Mikos, “Electrospinning of polymeric nanofibers for tissue engineering applications: A review”, Tissue Eng. 12, 1197-1211, 2006.
[3]X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar and L. A. Samuelson, “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano Lett. 2, 1273-1275, 2002.
[4]W. E. Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies,” Nanotechnology, 17, R89-106, 2006.
[5]A. L. Yarin and E. Zussman, “Upward needleless electrospinning of multiple nanofibers,” Polymer, 45, 2977-2980, 2004.
[6]Y. Liu, and J. H. He, “Bubble electrospinning for mass production of nanofibers,” Int. J. Nonlin. Sci. Num. Sim. 8, 393-396, 2007.
[7]X. Wang, H. Niu, T. Lin and X. Wang, “Needleless electrospinning of nanofibers with a conical wire coil,” Polym. Eng. Sci. 49, 1582-1586, 2009.
[8]A. L. Yarin, W. Kataphinan and D. H. Reneker, “Branching in electrospinning of nanofibers,” J. Appl. Phys. 98, 064501-12, 2005.
[9]D. H. Reneker, A. L. Yarin, H. Fong and S. Koombhongse, “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning,” J. Appl. Phys. 87, 4531-4547, 2000.
[10]J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen and N. C. Beck Tan, “Controlled deposition of electrospun poly(ethylene oxide) fibers,” Polymer, 42, 8163-8170, 2001.
[11]A. Vaseashta, “Controlled formation of multiple taylor cones in electrospinning process,” Appl. Phys. Lett. 90, 093115-3, 2007.
[12]D. Sun, C. Chang, S. Li and L. Lin, “Near-field electrospinning,” Nano Lett. 6, 839-842, 2006.
[13]C. Chang, K. Limkrailassiri and L. Lin, “Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns,” Appl. Phys. Lett. 93, 123111-3, 2008.
[14]C. Chang, V. H. Tran, J. Wang, Y. K. Fuh and L. Lin, “Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency,” Nano Lett. 10 726-731, 2010.
[15]D. Li and Y. Xia, “Electrospinning of nanofibers:reinventing the wheel,” Adv. Mater. 16, 1151–70, 2004.
[16]W. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan and F. K. Ho, “Electrospun nanofibrous structure: a novel scaffold for tissue engineering,” J. Biomed. Mater. Res. 60, 613–21, 2002.
[17]H. Liu, J. Kameoka, D. A. Czaplewski and H. G. Craighead, “Polymeric nanowire chemical sensor,” Nano Lett. 4, 671–5, 2004.
[18]M. M. Bergshoef and J. Vancso, “Transparent nanocomposites with ultrathin electrospun nylon-4,6 fiber reinforcement,” Adv. Mater. 11, 1362–5, 1999.
[19]W. Reisner, N. B. Larsen, A. Silahtaroglu, A. Kristensen, N. Tommerup, J. O. Tegenfeldt and H. Flyvbjerg, “Single-molecule denaturation mapping of DNA in nanofluidic channels,” Proc. Natl. Acad. Sci. USA. 107, 13294-9, 2010.
[20]S. L. Levy, J. T. Mannion, J. Cheng, C. H. Reccius and H. G. Craighead, “Entropic unfolding of DNA molecules in nanofluidic channels,” Nano Lett. 8, 3839-44, 2008.
[21]G. Salieb-Beugelaar, J. Teapal, J. van Nieuwkasteele, D. Wijnperlé, J. O. Tegenfeldt, F. Lisdat, A. van den Berg and J. C. T. Eijkel, “Field-dependent DNA mobility in 20 nm high nanoslits,” Nano Lett. 8, 1785-90, 2008.
[22]L. J. Guo, X. Cheng, and C. F. Chou, “Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching,” Nano Lett. 4, 69-73, 2004.
[23]F. H. J. van der Heyden, D. J. Bonthuis, D. Stein, C. Meyer, and C. Dekker, “Electrokinetic energy conversion efficiency in nanofluidic channels,” Nano Lett. 6, 2232-2237, 2006.
[24]F. H. J. van der Heyden, D. J. Bonthuis, D. Stein, C. Meyer, and C. Dekker, “Power generation by pressure-driven transport of ions in nanofluidic channels,” Nano Lett. 7, 1022-1025, 2007.
[25]H. T. Hoang, I. M. Segers-Nolten, J.W. Berenschot, M. J. de Boer, N. R. Tas, J. Haneveld, and M. C. Elwenspoek, “Fabrication and interfacing of nanochannel devices for single-molecule studies,” J. Micromech. Microeng. 19, 065017, 2009.
[26]J. Perry and S. Kandlikar, “Review of fabrication of nanochannels for single phase liquid flow,” Microfluid. Nanofluid. 2, 185-193, 2006.
[27]Q. Xia, K. J. Morton, R. H. Austin, and S. Y. Chou, “Sub-10 nm self-enclosed self-limited nanofluidic channel arrays,” Nano Lett. 8, 3830-3833, 2008.
[28]C. Vieu, F. Carcenac, A. P´epin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: Resolution limits and applications,” Appl. Surf. Sci. 164, 111-117, 2000.
[29]O. C´espedes, S. M. Watts, J. M. D. Coey, K. Dorr, and M. Ziese, “Magnetoresistance and electrical hysteresis in stable half-metallic La0.7Sr0.3MnO3 and Fe3O4 nanoconstrictions,” Appl. Phys. Lett. 87, 083102, 2005.
[30]T. Arnal, R. Soulimane, A. Aassime, M. Bibes, Ph. Lecoeur, A. M. Haghiri-Gosnet, B. Mercey, A. V. Khvalkovskii, A. K. Zvezdin, and K. A. Zvezdin, “Magnetic nanowires patterned in the La2/3Sr1/3MnO3 half-metal,” Microelectron. Eng. 78–79, 201-205, 2005.
[31]R. Garcia, M. Calleja, and H. Rohrer, “Patterning of silicon surfaces with noncontact atomic force microscopy: Field-induced formation of nanometer-size water bridges,” J. Appl. Phys. 86, 1898-1903, 1999.
[32]E. S. Snow and P.M. Campbell, “AFM fabrication of sub-10-nanometer metal-oxide devices with in situ control of electrical properties,” Science 270, 1639-1641, 1995.
[33]A. A. Tseng, A. Notargiacomo, and T. P. Chen, “Nanofabrication by scanning probe microscope lithography: A review,” J. Vac. Sci. Technol. B 23, 877-894, 2005.
[34]I. Song, B. M. Kim, and G. Park, “Fabrication of a josephson junction using an atomic force microscope,” Appl. Phys. Lett. 76, 601-603, 2000.
[35]L. Pellegrino, Y. Yanagisawa, M. Ishikawa, T. Matsumoto, H. Tanaka, and T. Kawai, “(Fe,Mn)3O4 nanochannels fabricated by AFM local-oxidation nanolithography using Mo/Poly(methyl methacrylate) nanomasks,” Adv. Mater. 18, 3099-3104, 2006.
[36]C. Lee, E. H. Yang, N. V. Myung, and T. George, “A nanochannel fabrication technique without nanolithography,” Nano Lett. 3, 1339-1340, 2003.
[37]K. S. Chu, S. Kim, H. Chung, J. H. Oh, T. Y. Seong, B. H. An, Y. K. Kim, J. H. Park, Y. R. Do, and W. Kim, “Fabrication of monolithic polymer nanofluidic channels using nanowires as sacrificial templates,” Nanotechnology 21, 425302, 2010.
[38]D. Huh, K. L. Mills, X. Zhu, M. A. Burns, M. D. Thouless, and S. Takayama, “Tuneable elastomeric nanochannels for nanofluidic manipulation,” Nat. Mater. 6, 424-428, 2007.
[39]S. H. Lee, K. Limkrailassiri, Y. Gao, C. Chang, and L. Lin, “Chip-to-chip fluidic connectors via near-field electrospinning,” in Proceedings of MEMS, 61–64, 2007.
[40]Y. K. Fuh and H. S. Hsu, “Controlled formation of multiple jets and nanofibers deposition via near-field electrospinning process,” Int. J. Nonlinear Sci. Numer. Simul. 11, 123-130, 2010.
[41]G. I. Taylor, “Disintegration of water drops in an electric field,” Proc. R. Soc. London Ser. A, A280, 383-397, 1964.
[42]連禮智、許宏碩、陳生展、傅尹坤, “近場電紡織技術應用於選擇性沉積奈米纖維之分析研究”, 中國機械工程學會第27屆全國學術研討會, 台北, 2010年12月10-11日
[43]Y. K. Fuh and H. S. Hsu, “Fabrication of monolithic polymer nanofluidic channels via near-field electrospun nanofibers as sacrificial templates,” J. Micro/Nanolith. Mems Moems. 10, 0430041-5, 2011.
[44]A. Y. N. Sofla and C. Martin, “Study of the vapor-assisted method for bonding PDMS and glass: Effect of the vapor source,” J. Micromech. Microeng. 20, 125024, 2010.
[45]K. Malecha, I. Gancarz, andW. Tylus, “Argon plasma-assisted PDMS-LTCC bonding technique for microsystem applications,” J.Micromech. Microeng. 20, 115006, 2010.
[46]J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21, 27-40, 2000.
[47]M. A. Eddings, M. A. Johnson, and B. K Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng. 18, 067001, 2008.
[48]Y. Zeng and D. J. Harrison, “Self-assembled colloidal arrays as three-dimensional nanofluidic sieves for separation of biomolecules on microchips,” Anal. Chem. 79, 2289-2295, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊