跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/16 17:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋狄祥
研究生(外文):Ti-Hsiang Sung2
論文名稱:單晶片與複合微晶片發光二極體之熱電耦合模擬研究
論文名稱(外文):The research on single chip LED and multiple microchips LED by the thermal-electrical coupling method
指導教授:陳志臣
指導教授(外文):Jyh-Chen Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:88
中文關鍵詞:單晶片複合微晶片發光二極體數值模擬
外文關鍵詞:single chipmultiple microchipsnumerical simulationLED
相關次數:
  • 被引用被引用:1
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
近年來,發光二極體(LED)在固態照明中扮演著重要的地位,其中微製程技術的成熟,讓複合微晶片(Multiple Microchips)LED在近年來備受重視,複合微晶片是一種以陣列方式將多顆微晶粒連結而成的新式LED,如果將微晶粒以串聯陣列的方式做設計的話,除了可以提高在傳統單晶片LED中輸入電壓的限制以外,還可以配合在市面的交流電壓、透過全波整流器將交流電壓轉換成的全波電壓和直接使用直流電的三種方式來驅動點亮,但因為單晶片只能以直流的方式驅動,所以本研究將單晶片與複合微晶兩者在同樣尺寸和同樣磊晶的條件下,以直流式電流來驅動,並且針對不同瓦數時,複合微晶片的高電壓低電流特性在電性和溫度以及光三者的關係來和傳統低電流的單晶片做比較。另外本研究針對於LED發光層的物理機制中,利用光輸出功率量測的實驗結果來修正數值方法中的熱電耦合統御方程式。
研究中先透過接面溫度及光學特性的量測實驗與數值模擬來相互驗證之後,再利用模擬結果來分析複合微晶片和單晶片的電流密度與溫度分布形態上的差異。由結果可以發現複合微晶片的電流分布是局部雍塞的形式分布在整塊晶片中和單晶片中的整體壅塞完全不同,這樣的差異,使複合微晶片在溫度能平均分布於晶片中,且還有降低接面溫度的效果。複合微晶片的設計除了在電流密度和溫度分布造成的影響以外,還有複合微晶片的串聯設計下所造成高電壓低電流的特性,會讓非活化層所製造的焦耳較低,尤其在越高瓦數下,傳統的單晶片與複合微晶片在焦耳熱的差異更加明顯,這也是複合單晶片在高瓦數下能讓溫度較低使光輸出功率較好的主要原因之一。最後本研究利用數值的方法,來模擬在實驗中可能會造成LED燒毀的高瓦數電功率。從模擬結果得到在高瓦數的8W下單晶片已達光飽和而複合微晶片的光輸出功率則因為溫度較低的影響所以並未出現光飽和的現象,此外還可以利用高瓦數的模擬結果來估計兩種LED在此封裝體下,大約可以承受電功率在5W左右所產生的溫度,如果繼續增加電功率可能會因溫度過高開始有封裝上的損壞產生,並大約在電功率到達8W時,兩種LED的接面溫度都會超出晶片所能承受的溫度極限。
Recently, light-emitting diode (LED) has been playing an important role in solid-state lighting, especially the maturity of the micro process technology made the multiple microchips LED receive recognition in the market. The multiple microchips LED is a kind of new type LED which is connected by many multi-microchips in array way, if we design the multi-microchips in serial array, that we can not only raise the input voltage levels in the traditional single chip LED, but use the alternating current (AC), full-wave current and direct current (DC) these three ways to light up. However, the single chip only can drive in DC way. In my research, we put single chip and multiple microchips under the condition of same size and same epitaxy, driving with the DC. For different wattage, we can compare the difference of single chip and multiple microchips in the relation of electricity, temperature and light. Also, we use the result of light output power measurement to revise the governing equation of coupling of the thermal and electrical characteristics in the numerical
methods.
First, we use the measurement of junction temperature and optical characteristics to test and verify with the numerical analysis, then using the simulation result to analyze the different current density and temperature distribution between the single chip and the multiple microchips. According to the research, we found the electric distribution of the multiple microchips is partial-crowding, not alike the single chip is whole-crowding. This difference makes the multiple microchips is equally distributed and lower the junction temperature. Bacause of its series connection design, the multiple microchips turn into high voltage -low current and cause chip produce lower joule heat. Higher watts we use, the more different between the tradition single chip and multiple microchips. This is the reason why the multiple microchips can make lower temperature and better light output power. And last, we try to use numerical methods to simulate how high watts would caused LED destroy. From the result, we found the single chip under 8 watts has already reached Light saturation but the multiple microchips hasn’t because of its lower temperature. In addition, we can also calculate theses two LED can bear the temperature in about 5 watts . If we keep enhance the electric power may cause the package damaged and when the power reach about 8 watts, the junction
temperature of these two chips would be unbearable.
目錄
中文摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 xi
符號說明 xii
第一章 緒論 1
1-1研究背景 1
1-2相關研究 4
1-2-1 LED電流分布與熱影響的研究 4
1-2-1複合微晶片發光二極體的發展 5
1-3研究動機與目的 7
第二章 物理模型與數值方法 14
2-1發光二極體的工作原理 14
2-2發光二極體的發光效率 16
2-3電場數值理論 19
2-3-1統御域(subdomain)與邊界(boundary)條件的設定 19
2-3-2 活化層之等效導電率假設 21
2-4 溫場之統御方程式及邊界條件 22
第三章 LED量測系統及實驗方法 31
3-1 接面溫度量測理論 31
3-2 接面溫度量測系統 32
3-2-1 K-Factor校正曲線量測方法 32
3-2-2 LED接面溫度量測方法 33
3-3 LED 之光學特性量測系統 33
3-3-1 LED 二維光強度分布之量測 33
3-3-2 LED光功率的量測 34
第四章 結果與討論 38
4-1 LED 接面溫度量測結果 38
4-1-1接面溫度量測 38
4-2 LED 熱電耦合的相關模擬設定 39
4-3單晶片與複合微晶片熱電耦合的模擬結果 40
4-3-1單晶片的模擬結果 40
4-3-2複合微晶片的模擬結果 42
4-3-3相同功率下單晶片與複合微晶片的討論 43
4-4 高瓦數下的單晶片與複合微晶片預測結果 45
第五章 結論與未來展望 81
參考文獻 83
1. http://www.ledinside.com.tw/global_f_f_200901 ,LEDinside 全球白熾燈禁用時間表(2009).
2.經濟部技術處 產業技術白皮書(2011).
3. M. B‥urmen, F. Pernuš and B. Likar, “LED light sources: a survey of quality-affecting factors and methods for their assessment,” Meas. Sci. Technol.,19, 122002 (2008).
4. H. J. Round, “A note on carborundum,” Electrical World, 49, 309-310 (1907).
5. N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from
Ga(As1-xPx) junctions,” Appl. Phys. Lett., 1, 82-83 (1962).
6. A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting(John Wiley & Sons, New York, 2002).
7. H. Amano, N. Sawaki, I. Akasaki, and T. Toyoda, “Metal organic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl.Phys. Lett., 48, 353-355 (1986).
8. http://wp168.wordpress.com/2009/02/04/nichias-leds-hit-249-lmw
9. http://www.ledinside.com.tw/cree_254lm_per_w_201204
10. N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, L. Deng, “Solid-state lighting:failure analysis of white LEDs,” J. Cryst. Growth, 268, 449 (2004).
11. Philipslumileds, Luxeon Emitter Technical Datasheet
12. Philips White Paper“Understanding Power LED Lifetime Analysis”
13. L. Bechou, O. Rehioui, Y. Deshayes, O. Gilard, G.Quadri, Y. Ousten, “Measurement of the thermal characteristic of packages double-heterostructure lighe emitting diodes for space applications using spontaneous optical spectrum properties,” Opt. Laser Technol., 40, 589 (2008).
14. S. C. Yang, P. Lin , C. P. Wang, S. B. Huang, C. L.Chen, P. F. Chiang, A. T. Lee,M. T. Chu , “Failure and degradation mechanisms of high-power white light emitting diodes,” Microelectronics Reliability , 50, 959 (2010).
15. R. H. Horng,C. C. Chiang,Y. L. Tsai,C. P. Lin,K. Kan,H. I. Lin,andD. S. Wuu, “Thermal Management Design from Chip to Package for High Power InGaN/Sapphire LED Applications, ” Electrochem. Solid State Lett. ,12, H222(2009).
16. G. J. Sheu, F. S. Hwu, S. H. Tu, W. T. Chen, J. Y.Chang, and J. C. Chen, “The heat dissipation performance of LED applied a MHP,” Proc. SPIE ,5941,594113,(2005).
17. F. S. Hwu, G. J. Sheu, and J. C. Chen, “Thermal modeling and performance of LED packaging for illuminating device,” Proc. SPIE , 6337, 63371J (2006).
18. Y. C. Lee, J. C. Chen, F. S. Hwu, G. J. Sheu, W. D.Chen, and J. Y. Chang, “Passive heat dissipation devices for high power LEDs,” Proc. of the Eighth Chinese Optoelectronics Symposium (2006).
19. 許國君、陳志臣、胡凡勳、鄭健宏,“新世代照明技術:LED元件封裝之熱管
理分析,”光學工程 第九十期,69 (2005)。
20. X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys., 90, 4191 (2001).
21. H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwang, “Lateral current transport path, a model for GaN-based light-emitting diodes:Applications to practical device designs, ” Appl. Phys. Lett., 77, 1903 (2000).
22. H. Kim, S. J. Park, and H. Hwang, “Effects of current spreading on the performance of GaN-based light-emitting diodes,” IEEE Trans. Electron Devices,48, 1065 (2001).
23. H. Kim, S. J. Park, and H. Hwang, “Design and fabrication of highly efficient GaN-based light-emitting diodes,” IEEE Trans. Electron Devices , 49, 1715 (2002).
24. H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O Song, J. Cho, K. H. Baik, C. Sone, and Y. Park, and T. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett., 91, 023510-1 (2007).
25. X. Guo, Y. L. Li, and E. F. Schubert, “Efficiency of GaN/InGaN light-emitting diodes with interdigitated mesa geometry,” Appl. Phys. Lett., 79, 1936 (2001).
26. J. S. Yun, S. M. Hwang, and J. I. Shim, “Current spreading analysis in vertical electrode GaN-based blue LEDs,” Proc. SPIE , 6841, 68408 (2007).
27. H. Kim, S. J. Park, and H. Hwang, “Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs,” Appl Phys Lett., 81, 1326 (2002).
28. C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current
blocking layer,” J. Appl. Phys., 92, 2248 (2002).
29. G. J. Sheu, F. S. Hwu, J. C. Chen, J. K. Sheu, and W. C. Lai, “Effect of the Electrode Pattern on Current Spreading and Driving Voltage in a GaN Sapphire LED Chip,” J. Electrochem. Soc., 155, H836 (2008).
30. J. C. Chen, G. J. Sheu, F. S. Hwu, H. I. Chen, J. K. Sheu, T. X. Lee, and C. C. Sun, “Electrical-optical analysis of a GaN sapphire LED chip by considering the resistivity of the current-spreading layer,” Opt. Rev., 16, 213 (2009).
31. S. Hwang and J. Shim, “A Method for Current Spreading Analysis and Electrode Pattern Design in Light-Emitting Diodes,” IEEE Trans. Electron Devices, 55, 1123 (2008).
32. H. Kim, J. Cho, J. W. Lee, S. Yoon, H. Kim, C. Sone, Y. Park, and T. Y. Seong, “Consideration of the Actual Current-Spreading Length of GaN-Based Light-Emitting Diodes for High-Efficiency Design,” IEEE J. Quantum Electron.,43, 625 (2007).
33. S. J. Wang, K. M. Uang, S. L. Chen, Y. C. Yang, S. C. Chang, T. M. Chen, and C. H. Chen, “Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes,” Appl. Phys. Lett., 87, 011111-1 (2005).
34. J. T. Chu, C. C. Kao, H. W. Huang, W. D. Liang, C. F. Chu, T. C. Lu, H. C. Kuo, and S. C. Wang, “Effects of Different n-Electrode Patterns on Optical Characteristics of Large-Area p-Side-Down InGaN Light-Emitting Diodes Fabricated by Laser Lift-Off,” Jpn. J. Appl. Phys., 44, 7910 (2005).
35. W. B. Joyce and S. H. Wemple “Steady-state junction-current distributions in thin resistive films on semiconductor junctions, ”J. Appl. Phys. 41, 3818 (1970)
36. G. H. B. Thompson, Physics of Semiconductor Laser Devices (John Wiley and Sons, New York, 1980)
37. E. F. Schubert, Light-Emitting Diodes, 2nd ed., Cambridge University Press,Cambridge, England, (2006).
38. A. Chakraborty, L. Shen, H. Masui, S. P. DenBaars, and U. K. Mishra, “ Interdigitated multipixel arrays for the fabrication of high-power light- emitting diodes with very low series resistance, ”Appl. Phys. Lett., 88, 181120 -1 (2006).
39. M. V. Bogdanov, K. A. Bulashevich, I. Y. Evstratov, A. I. Zhmakin, and S. Y. Karpov, “Coupled modeling of current spreading, thermal effects and light extraction in III-nitride light-emitting diodes,” Semicond. Sci. Technol., 23, 125023 (2008).
40. F. S. Hwu ,J. C. Chen,J, S. H. Tu,G. J. Sheu,H. I. Chen ,and J. K. Sheud, “A Numerical Study of Thermal and Electrical Effects in a Vertical LED Chip ,” J.
Electrochem. Soc., 157, H31-H37 (2010)
41. J. P. Ao, H. Sato, T. Mizobuchi , K. Morioka, S. Kawano, Y. Muramoto, Y. B. Lee, D. Sato, Y. Ohno, and S. Sakai, “Monolithic Blue LED Series Arrays for High-Voltage AC Operation,” Phys. Stat. Sol. (a), 194, 376 (2002).
42. 王為,LED技術成熟-應用市場蓄勢待發,工業技術與資訊,173,3 (2006)。
43. H. H. Yen, W. Y. Yeh, and H. C. Kuo, “GaN alternating current light-emitting device,” Phys. Stat. Sol. (a) , 204, 2077 (2007).
44. H. H. Yen, H. C. Kuo, and W. Y. Yen, “Characteristics of single-chip GaN-based alternating current light-emitting diode, ” J. J. Appl. Phys., 47, 8808 (2008).
45. G. A. Onushkin, Y. J. Lee, J. J. Yang, H. K. Kim, J. K. Son, G. H. Park, and Y. J. Park, “Efficient Alternating Current Operated White Light-Emitting Diode Chip,”
IEEE Photonic. Tech. Lett., 21, 33 (2009).
46. W. W. Yeh, H. H. Yen, Y. J. Chan, “ The development of monolithic alternating current light-emitting diode,” Proc. of SPIE, 7939, 793910-4 (2010).
47. F. S. Hwu, C. H. Yang and J C Chen, “Method for measuring the mean junction temperature of alternating current light-emitting diodes,” Meas. Sci. Technol., 22
, 045701 (2011)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top