跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/21 16:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:崔智宣
研究生(外文):Chih-Hsuan Tsuei
論文名稱:LED光源暨LED與太陽光混和照明於室內照明之模擬與分析
論文名稱(外文):Simulating and analyzing the LED and LED/ sunlight hybrid illumination used in indoor lighting
指導教授:孫文信
指導教授(外文):Wen-Shing Sun
學位類別:博士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:98
中文關鍵詞:LED照明太陽能太陽照明
外文關鍵詞:LEDsolar energylightingsunlight illumination
相關次數:
  • 被引用被引用:1
  • 點閱點閱:557
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文之內容主要分為兩大部分。第一部份之內容為使用白光LED在辦公室之照明,首先分別建立LED光源與日光燈光源,並模擬兩者燈源於辦公室照明的情形,之後推算在標準照度下兩者光源之照度分佈及消耗功率,最後發現使用發光效率與日光燈相當的白光LED未必可以比較省電,但使用高效率白光LED確實是可以比日光燈原來的省電。
第二部分內容為高效率白光LED與太陽光混光照明在辦公室之應用,首先模擬太陽集光器收集準直太陽光,並在太陽集光器後方架設一個光學開關與分光系統,當辦公室在下班時間時,此光學開關為關閉,並引導全波段太陽光至太陽能電池轉換成電能,可供給LED發光;當上班時間時,光學開關為開啟,所收集之太陽光先經過一個分光鏡後,可分成可見光與不可見光波段,其中可見光波段由分光鏡反射後經由導光管進入一光箱內與光箱內白光LED光源均勻混合提供辦公室之室內照明;而不可見光波段經由分光鏡穿透,並由太陽能電池吸收,轉換成電能可再供給LED發光。在光箱內壁塗上一層高反射率硫酸鋇可均勻反射光源,並在光箱內四周架設140顆白光LED,與光箱內四個角落各放置一顆感測器,依四個感測器的平均照度可決定開啟白光LED的顆數,並在光箱內下方放置一擴散板,可降低眩光,提供一均勻且節能的室內照明環境。
There are two parts of description in this study. First, we simulate the illuminance and efficiency of LED and fluorescent light sources for interior illumination. According to the standard illuminance of table plane, we can estimate the amount of each light source. And then, the calculation results of the examination of simulations and real situations can be compared with each other, and we can find out its power consumption and benefit of high efficiency LEDs lighting.
Then in the second part, hybrid sunlight and LED illumination with renewable solar energy saving concept in indoor lighting is simulated and presented in the third part of this study. We can illuminate the indoor space and collect the solar energy by an optical switching system. When the system is turn off, the full spectrum of the sunlight is concentrated by a concentrator, and absorbed by solar photovoltaic devices that provide the electricity power for LEDs; when the system is turn on, the sunlight is collected by a concentrator and split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box and mixed with LED light uniformly in it, and finally provide more uniform illumination by a diffuser; the non-visible rays are supposed to be absorbed by solar photovoltaic devices and also provide the electricity power for LEDs. Simulating results show that the efficiency of the hybrid sunlight/LED illumination with renewable solar energy saving design can save some power consumption from lighting.
目 錄

中 文 摘 要 I
Abstract II
致謝 III
目 錄 VI
表 目 錄 IX
圖 目 錄 XI
第一章 簡介 1
1.1 動機 1
1.2 各章簡介 4
第二章 基礎理論 6
2.1 光度學 6
2.2 配光曲線 9
 2-3 表面特性與反射罩設計 11
 2-4 眩光(Glare) 15
 2-5 太陽光 17
第三章 日光燈與LED燈源之室內照明照度模擬與耗能分析 21
 3-1 日光燈燈源 23
 3-2 發光二極體(Light-Emitting Diodes, LEDs) 25
 3-3模擬過程 28
 3-3-1 模擬驗證 29
 3-3-2 日光燈燈源照明模擬 33
 3-3-3 LED燈源照明模擬 39
 3-4 結果與討論 46
第四章 太陽光與LED混和照明暨太陽能源再生概念於室內照明 55
 4-1 研究背景 56
 4-2 太陽集光器光學系統設計 59
 4-3 太陽集光器 60
 4-4 分光鏡 65
 4-5 光學開關系統 67
 4-6 太陽能電池 69
 4-7 太陽光與白光LED混光光箱 71
 4-8 照明分析與模擬 73
 4-9 太陽能源轉換之估算 86
第五章 結論 92
參考文獻 94
參考文獻
1.W.W. Jr. Tunnessen, K.J. McMahon, M. Baser, “Acrodynia: exposure to mercury from fluorescent light bulbs,” Pediatrics 79, 786–9 (1987).
2.S. Liu, A. Minato, S. Ozawa and M. Nakagawa, “A New Lighting Communication System for Audio Signal with White LED,” J. Light & Vis. Env. 31, pp.65-69 (2007).
3.N. Zheludev, “The life and times of the LED- a 100-year history,” Nature Photonics 1, pp. 189-192 (2007).
4.T. Yorifuji, M. Sakai, T. Yasuda, A. Maehara, A. Okada, T. Gouriki and T. Mannami, “Light Source and Ballast Circuits,” J. Light & Vis. Env. 31, pp.157-172 (2007).
5.R. Allan, “LEDs Lighten The Energy Load,” Electronic Design 55, 55-58 (2007).
6.D. X. Wang, I. T. Ferguson, and J. A. Buck, “GaN-based distributed Bragg reflector for high-brightness LED and solid-state lighting,” Appl. Opt. 46, 4763-4767 (2007).
7.T. Taguchi, “Developing White LED Lighting Systems and its Technological Roadmap in Japan,” J. Light & Vis. Env. 30, pp. 177-182 (2006).
8.R. Devonshire, “The Competitive Technology Environment for LED Lighting,” J. Light & Vis. Env., 3, 275-287 (2008).
9.A. J.W. Whang, P.C. Li, Y.Y. Chen, and S.L. Hsieh, “Guiding Light From LED Array Via Tapered Light Pipe for Illumination Systems Design,” J. Display Technol. 5, 104-108 (2009).
10.C. H. Tsuei, J. W. Pen, and W. S. Sun, “Simulating the illuminance and the efficiency of the LED and fluorescent lights used in indoor lighting design,” Opt. Express 16, 18692-18701 (2008).
11.M. A. Duguay and R. M. Edgar, “Lighting with sunlight using sun tracking concentrators,” Appl. Opt. 16, 1444-1446 (1977).
12.L. M. Fraas, W. R. Pyle, and P. R. Ryason, “Concentrated and piped sunlight for indoor illumination,” Appl. Opt. 22, 578-582 (1983).
13.C. H. Tsuei, W. S. Sun, and C. C. Kuo, “Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting,” Opt. Express 18, A640-A653 (2010).
14.W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater., 22 , 1010–1014 (2010).
15.I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Progr. Photovoltaics 16, 235-239 (2008).
16.G. Sun, F. Chang, and R. A. Soref, “High efficiency thin-film crystalline Si/Ge tandem solar cell,” Opt. Express 18, 3746-3753 (2010).
17.H. Chen, S. M. Yu, D. W. Shin and J. B. Yoo, “Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles,” Nanoscale Res. Lett., 5, 217-233, (2010).
18.C. Domínguez, I. Antón, and G. Sala, “Solar simulator for concentrator photovoltaic systems,” Opt. Express 16, 14894-14901 (2008).
19.J. Mohelnikova, “Evaluation of Indoor Illuminance from Light Guides,” J. Light and Vis. Env., 32, 20-26 (2008).
20.W. S. Sun, C. H. Tsuei and C.C. Kuo, “Calculating the converted solar energy of sunlight in the LED hybrid light box light system,” Lighting Res. Technol. 0, pp 1-9 (2012).
21.R. H. Simons and A. R. Bean, Lighting Engineering: Applied calculations, (Architectural Press,2001).
22.Virendra N. Mahajan, Optical Imaging And Aberrations - Part 1 Ray Geometrical Optics, (SPIE press,1998), pp.123-127.
23.D. Malacara, Optical Shop testing 2ndEdition, (Wiley, 1992), pp. 743-745.
24.Illumination Engineering Society of North America, “Glare,” in IESNA Lighting Handbook 9thEdition, (IESNA, 2000), pp. 128-131.
25.S. Fujita, Y. Yasuoka, T. Mizuno, S. Hamazaki, M. Nikaido and K. Ikeda, “Indirect Lighting system with Luminaire Installed on Uppermost Part Of the Wall to Achieve both Visibility and Energy Saving Performance,” J. Light & Vis. Env. 30, 137-147 (2006).
26.H. Takahashi, Y. Kobayashi, S. Onda and T. Irikura, “Position Index for the Matrix Light Source,” J.Light & Vis. Env. 31, 128-133 (2007).
27.N. Miller, “Glare is in the eye of the beholder,” Lighting Design & Application 31, 36-41 (2001).
28.P. Ngai, “The effect of overhead glare on visual discomfort [with discussion],” J. Illuminating Engineering Society 29, 29-38 (2000).
29.National Renewable Energy Laboratory,“ Reference solar spectral irradiance: Air Mass 1.5, ” http://rredc.nrel.gov/solar/spectra/am1.5/
30.Meteonorm, “ Global meteorological database,” http://meteonorm.com/
31.Chartered Institution of Building Services Engineers, “CIBSE LG7,” http://www-embp.eng.cam.ac.uk/resources/CIBSEOFFICELIGHTING.pdf
32.Philips Lumileds, “LXML-PWC1-0100 Datasheet,” http://www.lumileds.com/pdft/DS56.pdf
33.Nichia, “NS6w183T Datasheet,” http://www.nichia.com/specification/led_09/NS6W183T-H3-E.pdf”
34.Optical Research Associates, “Receivers,” in Illumination Module User’s Guide, (O.R.A., 2007), pp. 59-102.
35.A. Steinfeld and A. W. Weimer, “Thermochemical Production of Fuels with Concentrated Solar Energy,” Opt. Express 18, A100-A111 (2010).
36.S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunlight to electricity,” Opt. Express 18, A73-A78 (2010).
37.S. Choi, E. Cho, S. Lee, Y. Kim, and D. Lee, “Development of a high-efficiency laminated dye-sensitized solar cell with a condenser lens,” Opt. Express 19, A818-A823 (2011).
38.R. Upton, M. Cho, and T. Rimmele, “Force-optimized alignment for optical control of the Advanced Technology Solar Telescope,” Appl. Opt. 49, G105-G113 (2010).
39.M. Z. Jacobson, “Review of solutions to global warming, air pollution, and energy security,” Energy Environ. Sci. 2, 148-173 (2009).
40.L. Kazmerski NREL, “Best Research-Cell Efficiencies,” http://commons.wikimedia.org/wiki/File:PVeff(rev100921).jpg
41.Epistar, “The inverted metamorphic(IMM) solar cell,”
http://www.mzcan.com/taiwan/2448/announce/311/EN/20100114_4NBJKnLeLFII_aF2fRMLJMeYj.pdf
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊