跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/15 13:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃一家
研究生(外文):Yi-Jia Huang
論文名稱:以資料探勘技術應用於服務品質之個案研究-以全聯為例
論文名稱(外文):A Case Study of Using Data Mining Techniques in Service Quality-Use Pxmart as An Example
指導教授:吳信宏吳信宏引用關係
指導教授(外文):Hsin-Hung Wu
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:100
中文關鍵詞:服務品質分類與迴歸樹貝氏網路全聯維度縮減特徵選擇
外文關鍵詞:Service QualityClassification and Regression TreeBayesian NetworkPxmartDimension ReductionFeature Selection
相關次數:
  • 被引用被引用:12
  • 點閱點閱:1961
  • 評分評分:
  • 下載下載:563
  • 收藏至我的研究室書目清單書目收藏:1
本研究採用陳威廷(2011)針對全聯福利中心所建立之服務品質量表,利用IBM SPSS Modeler 14.2的分類與迴歸樹 (Classification and Regression Tree, CART)進行分類與預測,將量表中的28個問項當作投入變數,並將6類消費金額合併為3類作為目標變數,試圖以滿意度來預測消費金額,分析投入變數與目標變數間的規則,並找出最能影響消費金額的變數。而後利用SPSS 18.0進行維度縮減篩選出特徵值超過1的變數,重新投入CART並與前模型進行比較。最後,使用貝氏網路 (Bayesian Network)並重複以上過程,並將CART模型與貝氏網路模型進行模型評估。
在原始CART模型中樹深有13層,並得到33條本次消費金額類別的預測規則,合併消費金額類別後之樹深為12層,預測規則有32條,二模型結果都較為複雜;維度縮減和特徵選擇後模型精簡許多,樹深和規則各為9層、1層、14條和2條。貝氏網路方面,各模型之Markov Blanket結構皆無法分析,僅有維度縮減和特徵選擇之TAN (Tree Augmented Naïve Bayes)模型有產生貝氏網路圖。而後我們計算出二模型中,已知消費者滿意度的情況下,各類消費金額類別所發生之機率。在模型評估方面,IBM SPSS Modeler 14.2評估之優劣名次為:目標變數類別合併之CART、維度縮減之貝氏網路、原始模型之CART、特徵選擇之貝氏網路、維度縮減之CART與特徵選擇之CART模型。最後我們提出各模型的管理意涵。
This study used the service quality scale for Pxmart established by Chen (2011) and used classification and regression tree (CART) of IBM SPSS Modeler 14.2 to classify and predict the customers’ behaviors. Twenty eight items identified by Chen (2011) are input variables, while the three categories of amount spent per visit is the target variable. This study intends to predict the amount spent per visit and analyze the rules between input and target variables. Later, dimension reduction was performed by SPSS 18.0 to identify the variables with eigenvalue greater than one, and these variables become the input variables for CART. Finally, Bayesian network (BN) was applied to repeat the prior processes, and an evaluation among CART and BN models was performed.
In the original CART model, the tree depth was 13, and 33 rules of categories of amount spent per visit were generated. After merging categories of amount spent per visit, the tree depth was 12, 32 rules were obtained, and both results of models are too complex. The tree depth and rules are much simpler after dimension reduction and feature selection with the respective tree depths and rules are 9, 1, 14, and 2. For Bayesian network, the Markov blanket structure in all models could not be analyzed, only TAN (Tree Augmented Naïve Bayes) structure in dimension reduction and feature selection models generate Bayesian network graph. Later, we computed the probabilities of categories of amount spent per visit while consumer satisfaction is given. In model evaluation, the rankings performed by IBM SPSS Modeler 14.2 are: CART model with merged target variable categories, BN model with dimension reduction, original CART model, BN model with feature selection, CART model with dimension reduction, and CART model with feature selection. Finally, we suggested managerial implications for each model.
目錄
頁次
誌謝 I
摘要 II
ABSTRACT IV
圖目錄 IX
表目錄 XI
第一章 緒論 1
第一節 研究動機與研究背景 1
第二節 研究目的 3
第三節 研究流程 3
第二章 文獻探討 6
第一節 服務品質 6
一、服務的定義與特性 6
二、服務品質定義 8
三、服務品質衡量 10
第二節 資料探勘與決策樹 19
一、資料探勘 19
二、決策樹 22
第三節 分類與迴歸樹 23
第四節 維度縮減與特徵選擇 25
第五節 貝氏網路 26
第三章 研究方法 30
第一節 研究工具與步驟 30
第二節 資料來源 30
第三節 CART模型分析 33
一、CART預測模型建置 33
二、目標變數類別合併 35
三、維度縮減 36
四、特徵選擇 39
第四節 貝氏網路 40
第五節 模型評估 41
第四章 研究結果 43
第一節 CART結果 43
一、原始模型之CART結果 43
二、目標變數類別合併之CART結果 51
三、維度縮減之CART結果 60
四、特徵選擇之CART結果 66
第二節 貝氏網路結果 69
一、目標變數類別合併之貝氏網路結果 69
二、維度縮減之貝氏網路結果 70
三、特徵選擇之貝氏網路結果 82
第三節 各模型比較 88
第四節 模型評估 89
第五章 結論 92
第一節 CART管理意涵 92
第二節 貝氏網路管理意涵 94
參考文獻 96

圖目錄
圖1.1 研究流程圖 5
圖2.1 認知服務品質決定因素 13
圖2.2 服務品質模式 14
圖2.3 KDD的步驟 21
圖2.4 DAG的例子 27
圖3.1 陡坡圖 39
圖4.1 原始模型之樹狀圖 44
圖4.2 原始模型之重要變數圖 45
圖4.3 目標變數類別合併之樹狀圖 53
圖4.4 目標變數類別合併之重要變數圖 54
圖4.5 維度縮減之樹狀圖 61
圖4.6 維度縮減之重要變數圖 62
圖4.7 特徵選擇之樹狀圖 67
圖4.8 目標變數類別合併之TAN貝氏網路圖 69
圖4.9 目標變數類別合併之Markov Blanket貝氏網路圖 70
圖4.10 維度縮減之TAN貝氏網路圖 71
圖4.11 維度縮減之TAN重要變數圖 72
圖4.12 特徵選擇之TAN貝氏網路圖 82
圖4.13 特徵選擇之TAN重要變數圖 83
圖4.14 模型評估圖 90

表目錄
表2.1 財貨與服務的差異 8
表2.2 服務品質相關研究 9
表2.3 SERVQUAL構面 15
表2.4 RSQS構面 17
表2.5 Stanworth (2009)量表構面 19
表2.6 資料探勘功能與方法 22
表2.7 節點A (消費金額)之條件機率表 28
表2.8 節點B (性別)之條件機率表 28
表3.1 陳威廷 (2011)之全聯服務品質調查問項 31
表3.2 訓練-測試正確率 34
表3.3 3類目標類別訓練-測試正確率 35
表3.4 解說總變異量 37
表3.5 轉軸後的成份矩陣 38
表4.1 原始模型之變數權重 46
表4.2 原始模型之規則整理 47
表4.3 原始模型之訓練與測試資料正確率 50
表4.4 原始模型之實際與預測消費金額分析 50
表4.5 目標變數類別合併之變數權重 55
表4.6 目標變數類別合併之規則整理 56
表4.7 目標變數類別合併之訓練與測試資料正確率 58
表4.8 目標變數類別合併之實際與預測消費金額分析 59
表4.9 維度縮減之變數權重 63
表4.10 維度縮減之規則整理 63
表4.11 維度縮減之訓練與測試資料正確率 65
表4.12 維度縮減之實際與預測消費金額分析 65
表4.13 特徵選擇之訓練與測試資料正確率 68
表4.14 特徵選擇之實際與預測消費金額分析 68
表4.15 目標變數C7的條件機率 72
表4.16 變數2 (B2)的條件機率 73
表4.17 變數3 (B3)的條件機率 73
表4.18 變數9 (B9)的條件機率 74
表4.19 變數8 (B8)的條件機率 74
表4.20 C7 (本次消費金額)對於變數3的條件機率 77
表4.21 C7 (本次消費金額)對於變數9的條件機率 77
表4.22 C7 (本次消費金額)對於變數8的條件機率 77
表4.23 C7 (本次消費金額)對於變數3及變數9的條件機率 79
表4.24 C7 (本次消費金額)對於變數9及變數8的條件機率 80
表4.25 變數22 (B22)的條件機率 83
表4.26 變數23 (B23)的條件機率 84
表4.27 C7 (本次消費金額)對於變數22的條件機率 85
表4.28 C7 (本次消費金額)對於變數23的條件機率 85
表4.29 C7 (本次消費金額)對於變數22及變數23的條件機率 87
表4.30 各模型整理 89


一、中文部分

1. 王一芝 (2011),「便利店讓老外羨慕的幸福」,遠見雜誌,第300期,58頁。
2. 洪順慶 (2008),「行銷管理」,新陸書局股份有限公司。
3. 張云濤、龔玲 (2007),「資料探勘原理與技術」,五南圖書出版股份有限公司。
4. 陳威廷 (2011),「零售業服務品質量表構面之適用性探討-以全聯為例」,國立彰化師範大學企業管理學系碩士論文。
5. 陳順宇 (2005),「多變量分析」,華泰文化。
6. 楊錦洲 (2009),「服務品質-從學理到應用」,華泰文化事業股份有限公司。
7. 廖述賢、溫志皓 (2009),「資料採礦與商業智慧」,雙葉書廊有限公司。
8. 劉雪芬、郭廣洋與吳信宏 (2010),「應用分類迴歸樹於尖峰時段交通事故之研究」,中華民國品質學會第四十六屆年會暨2010國際品質管理研討會,E2-3。

二、英文部分

1. Anderson, E. W., Fornell, C., and Lehmann, D. R. (1994), “Customer Satisfaction, Market Share, and Profitability: Findings from Sweden,” Journal of Marketing, 58(3), pp. 53-66.
2. Angelova, B. and Zekiri, J. (2011), “Measuring Customer Satisfaction with Service Quality Using American Customer Satisfaction Model (ACSI Model),” International Journal of Academic Research in Business and Social Sciences, 1(3), pp. 232-258.
3. Archana, R. and Subha, D. (2012), “A Study on Service Quality and Passenger Satisfaction on Indian Airlines,” International Journal of Multidisciplinary Research, 2(2), pp. 50-63.
4. Beckwith, H. (1997), Selling the Invisible: A Field Guide to Modern Marketing, Warner Books Inc.
5. Berry, M. J. and Linoff, G. S. (1997), Data Mining Techniques: for Marketing, Sales, and Customer Support, John Wiley &; Sons, Inc.
6. Brady, M. k. and Cronin, J. J. (2001), “Some New Thoughts on Conceptualizing Perceived Service Quality: A Hierarchic Approach,” Journal of Marketing, 65(3), pp. 34-49.
7. Breiman, L., Friedman, J., Olshen, R. A., and Stone, C. J. (1984), Classification and Regression Trees, Wadsworth, Belmont, CA.
8. Buzzell, R. D. and Gale, B. T. (1987), The PIMS Principles: Linking Strategy to Performance, New York: Free Press.
9. Carman, J.M. (1990), “Consumer Perceptions of Service Quality: An Assessment of the SERVQUAL Dimensions,” Journal of Retailing, 66(1), pp. 33-55.
10. Chao, P., Fu, H. -P., Lee, H. -H., and Chang, Y. -C. (2008), “Identifying the Customer Profiles for 3C-Product Retailers: A Data Mining Approach,” International Journal of Electronic Business Management, 6(4), pp. 195-202.
11. Chatterjee, S. and Chatterjee, A. (2005), “Prioritization of Service Quality Parameters Based on Ordinal Responses,” Total Quality Management &; Business Excellence, 16(4), pp. 477-489.
12. Chiou, J.S. and Droge, (2006), C., “Service Quality, Trust, Specific Asset Investment, and Expertise: Direct and Indirect Effects in a Satisfaction-Loyalty Framework,” Journal of the Academy of Marketing Science, 34(4), pp. 613-627.
13. Cronin, Jr, J. J. and Taylor, S. A. (1992), “Measuring Service Quality: A Reexamination and Extension,” Journal of Marketing, 56(3), pp. 55-68.
14. Dabholkar, P. A., Thorpe, D. I., and Joseph, O.R. (1996), “A Measure of Service Quality for Retail Store: Scale Development and Validation,” Journal of the Academy of Marketing Science, 24(1), pp. 3-16.
15. Desatnick, R. L. (1988), Managing to Keep the Customer, Boston, MA: Houghton Mifflin.
16. Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996), “From Data Mining to Knowledge Discovery in Databases,” AI Magazine, 17(3), pp. 37-54.
17. Finn, D.W. and Lamb, C.W. (1991), “An Evaluation of the SERVQUAL Scales in Retailing Setting,” Advances in Consumer Research, 18, pp. 483-490.
18. Fornell, C. and Wernerfelt, B. (1987), “Defensive Marketing Strategy by Customer Complaint Management: A Theoretical Analysis,” Journal of Marketing Research, 24(4), pp. 337-346.
19. Frawley, W. J., Piatetsky-Shapiro, G., and Matheus, C. J. (1992), “Knowledge Discovery Databases: An Overview,” AI Magazine, 13(3), pp. 57-70.
20. Gotlieb, J. B., Grewal, D., and Brown, S.W. (1994), “Consumer Satisfaction and Perceived Quality: Complementary or Divergent Constructs?” Journal of Applied Psychology, 79(6), pp. 875-885.
21. Gronroos, C. (1983), Strategic Management and Marketing in Service Sector, Marketing Science Institute.
22. Guyon, I. and Elisseeff, A. (2003), “An Introduction to Variable and Feature Selection,” Journal of Machine Learning Research, 3, pp. 1157-1182.
23. Han, J. and Kamber, M. (2006), Data Mining: Concepts and Techniques, 2nd Edition, Morgan Kaufmann Publishers.
24. Heckerman, D. (1997), “Bayesian Networks for Data Mining,” Data Mining and Knowledge Discovery, 1(1), pp. 79-119.
25. Hill, T. and Lewicki, P. (2005), Statistics Methods and Applications, 1th Edition, StatSoft, Inc.
26. Hotelling, H. (1933), “Analysis of a complex of statistical variables into principal components,” Journal of Educational Psychology, 24(6), pp. 417-441.
27. Kim, S. and Jin, B. (2001), “An Evaluation of the Retail Service Quality Scale for U.S. and Korean Customers of Discount Stores,” Advances in Consumer Research, 28, pp. 169-176.
28. Kleissner, C. (1998), “Data Mining for the Enterprise,” Proceedings of the Thirty-First Hawaii International Conference on System Sciences, 7, pp. 295-304.
29. Kotler, P. and Armstrong, G. (2007), Principles of Marketing, 12th Edition, Prentice Hall.
30. Larose, D. T. (2006), Data Mining Methods and Models, John Wiley &; Sons, Inc.
31. Lehtinen, U. and Lehtinen, J. R. (1991), “Two Approaches to Service Quality Dimensions,” The Service Industries Journal, 11(3), pp. 287-303.
32. Lin, S.-Y., Wei, J.-T., Weng, C.-C., and Wu, H.-H. (2011), “A Case Study of Using Classification and Regression Tree and LRFM Model in A Pediatric Dental Clinic,” In: Dong, L. (ed.) International Proceedings of Economic Development and Research – Innovation, Management and Service, OACSIT Press, 14, pp. 131-135.
33. Liu, H and Motoda, H. (1998), Feature Selection for Knowledge Discovery and Data Mining, Kluwer Academic Publishers.
34. Loh, W. Y. (2011), “Classification and Regression Trees,” Wires Data Mining and Knowledge Discovery, 1(1), pp. 14-23.
35. Lovelock, C. and Wirtz, J. (2007), Service Marketing: People, Technology, Strategy, 6th Edition, Prentice Hall.
36. Metha, S. C. and Lalwani, A. K. (2000), “Service Quality in Retailing: Relative Efficiency of Alternative Measurement Scales for Different Product-Service Environments,” International Journal of Retail and Distribution Management, 28(2), pp. 62-73.
37. Mikut, R. and Reischl, M. (2011), “Data Mining Tools,” Wires Data Mining and Knowledge Discovery, 1(5), pp. 431-443.
38. Naseem, A., Ejaz, S., and Malik, K. (2011), “Improvement of Hotel Service Quality: An Empirical Research in Pakistan,” International Journal of Multidisciplinary Sciences and Engineering, 2(5), pp. 52-56.
39. Nicholson, S. (2006), “The Basis for Bibliomining: Frameworks for Bringing Together Usage-Based Data Mining and Bibliometrics through Data Warehousing in Digital Library Services,” Information Processing &; Management, 42(3), pp. 785-804.
40. Olson, D. and Shi, Y. (2007), Introduction to Business Data Mining, Irwin Professional Publishing.
41. Parasuraman, A., Zeithaml V. A., and Berry L. L. (1985), “A Conceptual Model of Service Quality and Its Implications for Future Research,” Journal of Marketing, 49(4), pp. 41-50.
42. Parasuraman, A., Zeithaml V. A., and Berry L. L. (1988), “SERVQUAL: A Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality,” Journal of Retailing, 64(1), pp. 12-40.
43. Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 1th Edition, Morgan Kaufmann.
44. Pearson, K. (1901), “On Lines and Planes of Closest Fit to Systems of Points in Space,” Philosophical Magazine, 2(6), pp. 559-572.
45. Prabha, R. M., Soolakshna, D. L. B., and Perunjodi, N. (2010), “Service Quality in the Public Service,” International Journal of Management and Marketing Research, 3(1), pp. 37-50.
46. Reichheld, F. F., and Sasser, Jr., W. E. (1990), Zero Defections: Quality Come to Services, Harvard Business Review, 68(5), pp. 105-111.
47. Rokach, L., and Maimon, O. (2008), Data Mining with Decision Trees  Theory and Applications, Singapore: World Scientific Publishing Co.
48. Sasser, W. E., Olsen, R. P., and Wyckoff, D. D. (1978), Management of Service Operations: Text and Cases, Boston: Allyn and Bacon.
49. Siu, N. Y. M. and Cheung, J. T. H. (2001), “A Measure of Retail Service Quality,” Marketing Intelligence &; Planning, 19(2), pp. 88-96.
50. Song, Z. and Kusiak, A. (2009), “Optimising Product Configurations with A Data-Mining Approach,” International Journal of Production Research, 47(7), pp. 1733-1751.
51. Spreng, R. A. and Mackoy, R. D (1996), “An Empirical Examination of a Model of Perceived Service Quality and Satisfaction,” Journal of Retailing, 72(2), pp. 201-214.
52. Stanworth, J. O. (2009), “Developers and Terminators in Hypermarkets' Relationships with Chinese Customers,” Asia Pacific Journal of Marketing and Logistics, 21(2), pp. 280-293.
53. Stephenson, T. A. (2000), An Introduction to Bayesian Network Theory and Usage, Idiap Research Report.
54. Sung, T. K., Chang, N., and Lee, G. (1999), “Dynamics of Modeling in Data Mining: Interpretive Approach to Bankruptcy Prediction,” Journal of Management Information Systems, 16(1), pp. 63-85.
55. Wu, S. and Guo, J. (2011), A Data Mining Analysis of the Parkinson’s Disease, iBusiness, 3(1), pp. 71-75.
56. Zeithaml, V. A. and Bitner, M. J. (2000), Service Marketing: Integrating Customer Focus across the Firm, 2nd Edition, New York: McGraw-Hill.
57. Zeithaml, V. A., Bitner, M. J., and Gremler, D. D. (2006), Service Marketing: Integrating Customer Focus across the Firm, 4th Edition, McGraw-Hill.
58. Zeng, Y., Luo, J., and Lin, S. (2009) “Classification Using Markov Blanket for Feature Selection,” IEEE International Conference on Granular Computing, pp. 743-747.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊