|
第一章 1. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80, 3967 (2002). 2. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94, 3675 (2003). 3. Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-molecular beam epitaxy growth and properties of InN and related alloys,” Jpn. J. Appl. Phys. 42, 2549 (2003). 4. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91, 132117 (2007). 5. A. Yamamoto, Md. R. Islam, T.-T. Kang, and A. Hashimoto, “Recent advances in InN-based solar cells: status and challenges in InGaN and InAlN solar cells,” Phys. Status Solidi C 7, 1309 (2010). 6. J. Nelson, The Physics of Solar Cells, London: Imperial Collage Press, 2003, pp. 33–34. 7. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cell,” J. Appl. Phys. 51, 4494 (1980). 8. M. D. Archer and R. Hill, Clean Electricity from Photovoltaics, London: Imperial Collage Press, 2001, p. 355. 9. T. Takamoto, T. Agui, E. Ikeda, and H. Kurita, “High-efficiency InGaP/In0.01Ga0.99As tandem solar cells lattice-matched to Ge substrates,” Sol. Energy Mater. Sol. Cells 66, 511 (2001). 10. R. R. King, D. C. Law, K. M. Edmonson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90, 183516 (2007). 11. W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight, ” Appl. Phys. Lett. 94, 223504 (2009). 12. J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93, 123505 (2008). 13. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80, 3967 (2002). 14. V. Davydov, A. Klochikhin, R. Seisyan, V. Emtsev, S. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, r1 (2002). 15. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81, 1246 (2002). 16. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1–xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94, 6477 (2003). 17. A. J. Ekpunobi and A. O. E. Animalu, “Band offsets and properties of AlGaAs/GaAs and AlGaN/GaN material systems,” Superlattices Microstruct. 31, 247 (2002). 18. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985 (1983). 19. J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, J. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71, 2572 (1997). 20. R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70, 1089 (1997). 21. A. Gokarna, A. Gauthier-Brun, W. Liu, Y. Androussi, E. Dumont, E. Dogheche, J. H. Teng, S. J. Chua, and D. Decoster, “Optical and microstructural properties versus indium content in InxGa1–xN films grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 96, 191909 (2010). 22. J. W. Ager III, J. Wu, K. M. Yu, R. E. Jones, S. X. Li, W. Walukiewicz, E. E. Haller, H. Lu, and W. J. Schaffc, “Group III-nitride alloys as photovoltaic materials,” Proc. SPIE 5530, 308 (2004). 23. X.-M. Cai, S.-W. Zeng, and B.-P. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett. 95, 173504 (2009). 24. C. Y. Park, J. M. Lim, J. S. Yu, and Y. T. Lee, “Structural and antireflective characteristics of catalyst-free GaN nanostructures on GaN/sapphire template for solar cell applications,” Appl. Phys. Lett. 96, 151909 (2010). 25. E. F. Schubert, Light-Emitting Diode, 2nd ed., Cambridge: Cambridge University Press, 2006, p. 227. 26. D. Holec, P. M. F. J. Costa, M. J. Kappers, and C. J. Humphreys, “Critical thickness calculations for InGaN/GaN,” J. Cryst. Growth 303, 314 (2007). 27. M. Leyer, J. Stellmach, Ch. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0001) GaN,” J. Cryst. Growth 310, 4913 (2008). 28. W. Zhao, L. Wang, J. Wang, Z. Hao, and Y. Luo, “Theoretical study on critical thicknesses of InGaN grown on (0001) GaN,” J. Cryst. Growth 327, 202 (2011). 29. D. Cherns, S. J. Henley, and F. A. Ponce, “Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence,” Appl. Phys. Lett. 78, 2691 (2001). 30. I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN”, Appl. Phys. Lett. 69, 2701 (1996). 31. R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70, 1089 (1997). 32. X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “High-quality InGaN/GaN heterojunctions and their photovoltaic effects,” Appl. Phys. Lett. 93, 261108 (2008). 33. K. Y. Lai, G. J. Lin, Y.-L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96, 081103 (2010). 34. J. I. Pankove and T. D. Moustakas, Gallium Nitride (GaN) II: Semiconductors and Semimetals, San Diego: Academic Press, 1999, pp. 190–193. 35. K. Kumakura, T. Makimoto, and N. Kobayashi, “Mg-acceptor activation mechanism and transport characteristics in p-type InGaN grown by metalorganic vapor phase epitaxy,” J. Appl. Phys. 93, 3370 (2003). 36. S. D. Burnham, G. Namkoong, D. C. Look, B. Clafin, and W. A. Doolittle “Reproducible increased Mg incorporation and large hole concentration in GaN using metal modulated epitaxy,” J. Appl. Phys. 104, 024902 (2008). 37. W. Götz, N. M. Johnson, D. P. Bour, M. D. McCluskey, and E. E. Haller, “Local vibrational modes of the Mg–H acceptor complex in GaN,” Appl. Phys. Lett. 69, 3725 (1996). 38. J. Neugebauer and C. G. Van de Walle, “Role of hydrogen in doping of GaN,” Appl. Phys. Lett. 68, 1829 (1996). 39. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28, L2112 (1989). 40. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys. 31, 1258 (1992). 41. W.-C. Lai, M. Yokoyama, S.-J. Chang, J.-D. Guo, C.-H. Sheu, T.-Y. Chen, W.-C. Tsai, J.-S. Tsang, S.-H. Chan, and S. M. Sze, “Optical and electrical characteristics of CO2-laser-treated Mg-doped GaN film,” Jpn. J. Appl. Phys. 39, L1138 (2000). 42. M. Smith, G. D. Chen, J. Y. Lin, H. X. Jiang, A. Salvador, B. N. Sverdlov, A. Botchkarev, H. Morkoc, and B. Goldenberg, “Mechanisms of band-edge emission in Mg-doped p-type GaN,” Appl. Phys. Lett. 68, 1883 (1996). 43. W. Götz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street, “Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 68, 667 (1996). 44. P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices,” Appl. Phys. Lett. 74, 3681 (1999). 45. P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K. Mi, A. W. Saxler, R. Perrin, and W. C. Mitchel, “Polarization-enhanced Mg doping of AlGaN/GaN superlattices,” Appl. Phys. Lett. 75, 2444 (1999). 46. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures,” Science 327, 60 (2010). 47. L. Zhang, K. Ding, J. C. Yan, J. X. Wang, Y. P. Zeng, T. B. Wei, Y. Y. Li, B. J. Sun, R. F. Duan, and J. M. Li, “ Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure,” Appl. Phys. Lett. 97, 062103 (2010). 48. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56, 10024 (1997). 49. E. F. Schubert, Light-Emitting Diode, 2nd ed., Cambridge: Cambridge University Press, 2006, p. 225. 50. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85, 3222 (1999). 51. O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys. 87, 334 (2000). 52. V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures,” Appl. Phys. Lett. 80, 1204 (2002). 53. J. Simon, Z. Zhang, K. Goodman, H. Xing, T. Kosel, P. Fay, and D. Jena, “Polarization-Induced zener tunnel junctions in wide-band-gap heterostructures,” Phys. Rev. Lett. 103, 026801 (2009). 54. S. Krishnamoorthy, D. N. Nath, F. Akyol, P. S. Park, M. Esposto, and S. Rajan, “Polarization-engineered GaN/InGaN/GaN tunnel diodes,” Appl. Phys. Lett. 97, 203502 (2010). 55. T. Takeuchi, G. Hasnain, S. Corzine, M. Hueschen, Jr., R. P. Schneider, C. Kocot, M. Blomqvist, Y. Chang, D. Lefforge, M. R. Krames, L. W. Cook, and S. A. Stockman, “GaN-based light-emitting diodes with tunnel junctions,” Jpn. J. Appl. Phys. 40, L861 (2001). 56. I. Ozden, E. Makarona, A. V. Nurmikko, T. Takeuchi, and M. Krames, “A dual-wavelength indium gallium nitride quantum well light emitting diode,” Appl. Phys. Lett. 79, 2532 (2001). 57. J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang, and G. C. Chi, “Low-operation voltage of InGaN/GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer,” IEEE Electron Device Lett. 22, 460 (2001). 58. M. J. Grundmann and U. K. Mishra, “Multi-color light emitting diode using polarization-induced tunnel junctions,” Phys. Status Solidi C 4, 2830 (2007). 59. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73, 2006 (1998). 60. F. Renner, P. Kiesel, G. H. Döhler, M. Kneissl, C. G. Van de Walle, and N. M. Johnson, “Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy,’ Appl. Phys. Lett. 81, 490 (2002). 61. H. Zhang, E. J. Miller, E. T. Yu, C. Poblenz, and J. S. Speck, “Measurement of polarization charge and conduction-band offset at InxGa1–xN/GaN heterojunction interfaces,” Appl. Phys. Lett. 84, 4644 (2004).
第二章 1. APSYS Version 2010.03.01 by Crosslight Software Inc., Burnaby, Canada. (http://www.crosslight.com) 2. S. L. Chuang and C. S. Chang, “k∙p method for strained wurtzite semiconductors,” Phys. Rev. B 54, 2491 (1996). 3. S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12, 252 (1997). 4. J. Piprek, Semiconductor Optoelectronic Device: Introduction to Physics and Simulation, San Diego: Academic Press, 2003, pp. 49–50. 5. S. L. Chuang, “Optical gain of strained wurtzite GaN quantum-well lasers,” IEEE J. Quantum Electron. 32, 1791 (1996). 6. Y. C. Yeo, T. C. Chong, M.-F. Li, and W. J. Fan, “Electronic band structures and optical gain spectra of strained wurtzite GaN-AlxGa1–xN quantum-well lasers,” IEEE J. Quantum Electron. 34, 526 (1998). 7. Y. C. Yeo, T. C. Chong, M. F. Li, and W. J. Fan, “Analysis of optical gain and threshold current density of wurtzite InGaN/GaN/AlGaN quantum well lasers,” J. Appl. Phys. 84, 1813 (1998). 8. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94, 3675 (2003). 9. J. Piprek, Semiconductor Optoelectronic Device: Introduction to Physics and Simulation, San Diego: Academic Press, 2003, pp. 70–71. 10. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815 (2001). 11. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81, 1246 (2002). 12. N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Temperature and compositional dependence of the energy band gap of AlGaN alloys,” Appl. Phys. Lett. 87, 242104 (2005). 13. J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94, 4457 (2003). 14. Y.-K. Kuo, Y.-H. Shih, M.-C. Tsai, and J.-Y. Chang, “Improvement in electron overflow of near-ultraviolet ingan leds by specific design on last barrier,” IEEE Photonics Technol. Lett. 23, 1630 (2011). 15. J.-Y. Chang and Y.-K. Kuo, “Influence of polarization-matched AlGaInN barriers in blue InGaN light-emitting diodes,” Opt. Lett. 37, 1574 (2012). 16. M. Moret, B. Gil, S. Ruffenach, O. Briot, Ch. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Optical, structural investigations and band-gap bowing parameter of GaInN alloys,” J. Cryst. Growth 311, 2795 (2009). 17. J. Piprek and S. Nakamura, “Physics of high-power InGaN/GaN lasers,” IEE Proc.-Optoelectron. 149, 145 (2002). 18. J. Piprek, Semiconductor Optoelectronic Device: Introduction to Physics and Simulation, San Diego: Academic Press, 2003, pp. 61–66. 19. J. Piprek, R. K. Sink, M. A. Hansen, J. E. Bowers, and S. P. DenBaars, “Simulation and optimization of 420 nm InGaN/GaN laser diodes,” Proc. SPIE 3944, 28 (2000). 20. K. Kumakura, T. Makimoto, and N. Kobayashi, “Mg-acceptor activation mechanism and transport characteristics in p-type InGaN grown by metalorganic vapor phase epitaxy,” J. Appl. Phys. 93, 3370 (2003). 21. J. Piprek, Semiconductor Optoelectronic Device: Introduction to Physics and Simulation, San Diego: Academic Press, 2003, p. 93. 22. G. F. Brown, J. W. Ager III, W. Walukiewicz, and J. Wu, “Finite element simulations of compositionally graded InGaN solar cells,” Sol. Energy Mater. Sol. Cells 94, 478 (2010).
第三章 1. D. A. B. Miller, D. S. Chemla, and T. C. Damen, “Band-edge electroabsorption in quantum well structure: The quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173 (1984). 2. S.-H. Yen, Y.-K. Kuo, M.-L. Tsai, and T.-C. Hsu, “Investigation of violet InGaN laser diodes with normal and reversed polarizations,” Appl. Phys. Lett. 91, 201118 (2007). 3. Y.-K. Kuo, J.-Y. Chang, M.-C. Tsai, and S.-H. Yen, “Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers,” Appl. Phys. Lett. 95, 011116 (2009). 4. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91, 183507 (2007). 5. M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93, 041102 (2008). 6. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91, 132117 (2007). 7. C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93, 143502 (2008). 8. D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 94, 081113 (2009). 9. J. R. Chen, T. C. Lu, H. C. Kuo, K. L. Fang, K. F. Huang, C. W. Kuo, C. J. Chang, C. T. Kuo, and S. C. Wang, “Study of InGaN–GaN light-emitting diodes with different last barrier thicknesses,” IEEE Photon. Technol. Lett. 22, 860 (2010). 10. V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures,” Appl. Phys. Lett. 80, 1204 (2002). 11. O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys. 87, 334 (2000). 12. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73, 2006 (1998). 13. F. Renner, P. Kiesel, G. H. Döhler, M. Kneissl, C. G. Van de Walle, and N. M. Johnson, “Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy,” Appl. Phys. Lett. 81, 490 (2002). 14. H. Zhang, E. J. Miller, E. T. Yu, C. Poblenz, and J. S. Speck, “Measurement of polarization charge and conduction-band offset at InxGa1–xN/GaN heterojunction interfaces,” Appl. Phys. Lett. 84, 4644 (2004). 15. D. Holec, P. M. F. J. Costa, M. J. Kappers, and C. J. Humphreys, “Critical thickness calculations for InGaN/GaN,” J. Cryst. Growth 303, 314 (2007). 16. Y. G. Xiao, Z. Q. Li, M. Lestrade, and Z. M. Simon Li, “Modeling of InGaN PIN solar cells with defect traps and polarization interface charges,” Proc. 35th IEEE Photovoltaic Spec. Conf., 003378 (2010). 17. S. O. Kasap, Optoelectronics and photonics: Principles and Practices, Taiwan: Pearson Education Taiwan LTD., 2012, pp. 130–131. 18. J. Nelson, The Physics of Solar Cells, London: Imperial Collage Press, 2003, p. 172. 19. Z. Q. Li, M. Lestradet, Y. G. Xiao, and S. Li, “Effects of polarization charge on the photovoltaic properties of InGaN solar cells,” Phys. Status Solidi A 208, 928 (2010). 20. M. Lestrade, Z. Q. Li, Y. G. Xiao, and Z. M. Simon Li, “Modeling of polarization effects in InGaN PIN solar cells,” Opt. Quantum Electron. 42, 699 (2011). 21. J.-Y. Chang and Y.-K. Kuo, “Comment on “The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN-InGaN photovoltaic devices” [Appl. Phys. Lett. 96, 051107 (2010)],” Appl. Phys. Lett. 98, 036101 (2011). 22. J.-Y. Chang and Y.-K. Kuo, “Numerical study on the influence of piezoelectric polarization on the performance of p-on-n (0001)-face GaN/InGaN p-i-n solar cells,” IEEE Electron Device Lett. 32, 937 (2011). 23. Y.-K. Kuo, J.-Y. Chang, and Y.-H. Shih, “Numerical study of the effects of hetero-interfaces, polarization charges, and step-graded interlayers on the photovoltaic properties of (0001) face GaN/InGaN p-i-n solar cell,” IEEE J. Quantum Electron. 48, 367 (2012). 24. J.-Y. Chang and Y.-K. Kuo, “Simulation of N-face InGaN-based p-i-n Solar Cells,” J. Appl. Phys., accepted 12 July 2012.
第四章 1. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406, 865 (2000). 2. M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, “Structural characterization of nonpolar (11 0) a-plane GaN thin films grown on (1 02) r-plane sapphire,” Appl. Phys. Lett. 81, 469 (2002). 3. Y. S. Park, H. S. Lee, J. H. Na, H. J. Kim, S. M. Si, H.-M. Kim, T. W. Kang, and J. E. Oh, “Polarity determination for GaN/AlGaN/GaN heterostructures grown on (0001) sapphire by molecular beam epitaxy,” J. Appl. Phys. 94, 800 (2003). 4. M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91, 183507 (2007). 5. Y.-K. Kuo, J.-Y. Chang, M.-C. Tsai, and S.-H. Yen, “Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer,” Opt. Lett. 35, 3285 (2010). 6. C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN lightemitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97, 261103 (2010). 7. G. F. Brown, J. W. Ager III, W. Walukiewicz, and J. Wu, “Finite element simulations of compositionally graded InGaN solar cells,” Sol. Energy Mater. Sol. Cells 94, 478 (2010). 8. S. D. Burnham, G. Namkoong, D. C. Look, B. Clafin, W. A. Doolitte, “Reproducible increased Mg incorporation and large hole concentration in GaN using metal modulated epitaxy,” J. Appl. Phys. 104, 024902 (2008). 9. A. Bhattacharyya, W. Li, J. Cabalu, T. D. Moustakas, D. J. Smith, and R. L. Hervig, “Efficient p-type doping of GaN films by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 85, 4956 (2004). 10. Y.-K. Kuo, J.-Y. Chang, M.-C. Tsai, and S.-H. Yen, “Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer,” Opt. Lett. 35, 3285 (2010). 11. C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97, 261103 (2010). 12. J.-Y. Chang, B.-T. Liou, H.-W. Lin, Y.-H. Shih, S.-H. Chang, and Y.-K. Kuo, “Numerical investigation on the enhanced carrier collection efficiency of Ga-face GaN/InGaN p-i-n solar cells with polarization compensation interlayers,” Opt. Lett. 36, 3500 (2011). 13. M. R. Islam, Y. Ohmura, A. Hashimoto, A. Yamamoto, K. Kinoshita, and Y. Koji, “Step-graded interlayers for the improvement of MOVPE InxGa1–xN (x~0.4) epi-layer quality,” Phys. Status Solidi C 7, 2097 (2010). 14. K. Kumakura, T. Makimoto, and N. Kobayashi, “High hole concentrations in Mg-doped InGaN grown by MOVPE,” J. Cryst. Growth 221, 267 (2000).
|