|
[1]A. Grama, A. Gupta, G. Karypis, V. Kumar, Introduction to Parallel Computing, Second Edition, Addison-Wesley, 2003. [2]K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A. Patterson, W.L. Plishker, J. Shalf, S.W. Williams, K.A. Yelick, “The landscape of parallel computing research : a view from Berkeley”, Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley , pp.1-54, 2006. [3]T. Smith, M. Waterman, “Identication of common molecularsubsequences”,Journal of Molecular Biology, pp. 195-197, 1981. [4]M. Hafeez, M. Younus, “An effectivesolution for matrix parenthesization problemthrough parallelization”, International Journal of Computers,pp. 1-9, 2007. [5]H.Lee, J.Kim, S.J. Hong, S. Lee,“Processor allocation and task scheduling of matrixchain products on parallel systems”, IEEE Transactions on Parallel and DistributedSystems,pp. 394-407,2003. [6]R.B. Lyngso, M. Zuker, “Fast evaluation of internal loops in RNA secondary structure prediction”, Bioinformatics,pp. 440-445, 1999. [7]G. Tan, N. Sun, G.R. Gao, “Improving performance of dynamic programming via parallelism and locality on multicore architectures”, IEEE Transactions on Parallel and Distributed System,pp. 261-274, 2009. [8]V. Boyer, D. El Baz, M. Elkihel, “Dense dynamic programming on multi GPU”, Proceedings of the 19th Euromicro International Conference on Parallel, Distributedand Network-Based Processing, pp. 545-551, 2011. [9]S. Solomon, P. Thulasiraman, “Performance study of mapping irregular computationson GPUs”, IEEE International Symposium on Parallel &; Distributed Processing, Workshops and Phd Forum, pp. 1-8,2010. [10] N. Deshmukh, H. Rivaz, P. Stolka, H.-J. Kang, G. Hager, M. Alaf, E. Boctor, “Real-time GPU-based analytic minimization/dynamic programming elastography”, Proceedings of the 2nd International Workshop on High-Performance Medical ImageComputing for Image-Assisted Clinical Intervention and Decision-Making, pp.1-10, 2010. [11]G. Rizk, D. Lavenier, “GPU accelerated RNA folding algorithm”, the 9th International Conference on Computational Science: Part I, pp. 1014-1023, 2009. [12]P. Steffen, R. Giegerich, M. Giraud, “GPU parallelization of algebraic dynamicprogramming”, Proc. of the 8th International Conference on Parallel Processing andApplied Mathematics: Part II, pp. 290-299, 2009. [13]C.-H. Sin, C.-M. Cheng, S.-H. Lai, S.-Y. Yang, “Geodesic tree-based dynamic programming for fast stereo reconstruction”, IEEE 12th International Conference on Computer Vision Workshops, pp. 801-807, 2009. [14]J. Congote, J. Barandiaran, I. Barandiaran, O. Ruiz, “Realtime dense stereo matchingwith dynamic programming in CUDA”, XIX Spanish Congress of Graphical Informatics, pp. 231-234, 2009.
[15] Y. Liu, B. Schmidt, D.L. Maskell, “CUDASW++2.0: enhanced Smith-Waterman protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD Abstractions”, BMC Research Notes, 3(1) 93, 2010. [16]K. Dohi, K. Benkridt, C. Ling, T. Hamada, Y. Shibata, “Highly efficient mapping of theSmith-Waterman algorithm on CUDA-compatible GPUs”, Proc. 21st IEEE International Conference on Application-specific Systems Architectures and Processors, pp. 29-36, 2010. [17]D. Razmyslovich, G. Marcus, M. Gipp, M. Zapatka, A. Szillus, Implementation of Smith-Waterman algorithm in OpenCL for GPUs, Second International Workshop on High Performance Computational Systems Biology, pp. 48-56, 2010. [18]S. Xiao, A.M. Aji, W. Feng, “On the robust mapping of dynamic programming onto a graphics processing unit”, 15th International Conference on Parallel and Distributed Systems, pp. 26-33, 2009. [19]L. Ligowski, W. Rudnicki, “An efficient implementation of Smith Waterman algorithm on GPU using CUDA, for massively parallel scanning of sequence databases”, IEEE International Symposium on Parallel and Distributed Processing, pp.1-8, 2009. [20]C. Ling, K. Benkrid, T. Hamada, “A parameterisable and scalable Smith-Waterman algorithm implementation on CUDA-compatible GPUs”, IEEE 7th Symposium on Application Specific Processors, pp. 94-100, 2009. [21]G.M. Striemer and A. Akoglu, “Sequence alignment with GPU: performance and design challenges”, IPDPS, pp.1-10, 2009. [22]S.A. Manavski, G. Valle, “CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment”, BMC Bioinformatics, 9(Suppl 2):S10, 2008. [23]Y. Munekawa, F. Ino, K. Hagihara, “Design and implementation of the Smith-Waterman algorithm on the CUDA-compatible GPU”, 8th IEEE International Conference on BioInformatics and BioEngineering, pp. 1-6, 2008. [24]W. Liu, B. Schmidt, G. Voss, W. Muller-Wittig, “Streaming algorithms for biological sequence alignment on GPUs”, IEEE Transactions on Parallel and Distributed Systems, pp. 1270-1281,2007. [25]Y. Liu, W. Huang, J. Johnson, S. Vaidya, “GPU accelerated Smith-Waterman”, Proc. Int'l Conf. Computational Science, pp. 188-195, 2006. [26]J. Nickolls, W.J. Dally, “The GPU computing era”, IEEE Micro, pp. 56-69, 2010. [27]CUDAZone [Online].Available http://www.nvidia.com/object/cuda_home_new.html. [28]M. Harris, S. Sengupta, J.D. Owens, Parallel prefix sum (scan) with CUDA, GPU Gems, 2007. [29]Chao-Chin Wu, Jenn-Yang Ke, Heshan Lin, and Wu-chunFeng, “Optimizing Dynamic Programming on Graphics Processing Units via Adaptive Thread-Level Parallelism,” IEEE ICPADS 2011, pp96-103. , 2011. [30]Shucai Xiao, Wu-chunFeng,” “Inter-block GPU communication via fast barrier synchronization”, IEEE IPDPS 2010, pp.1-12, 2010.
|