跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴嘉輝
研究生(外文):Chai-Hui Lai
論文名稱:具非接觸式電源之無線胎壓監測系統研究
論文名稱(外文):The Study of Wireless Tire Pressure Monitoring System with Contactless Power Supply
指導教授:羅鈞壎陳財榮陳財榮引用關係
指導教授(外文):Jeen-Shen RowTsair-Rong Chen
學位類別:博士
校院名稱:國立彰化師範大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:180
中文關鍵詞:無線胎壓監測系統非接觸式供電系統圓形線圈耦合係數
外文關鍵詞:Wireless Tire Pressure Monitoring SystemContactless Power Supply SystemCircle Coils Coupling Coeiffient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:399
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著汽車工業的發展,車用電子相關領域如動力驅動系統、影音娛樂、行車記錄、衛星導航及行車安全與預警系統等逐漸興起,其中攸關行車安全之輪胎壓力,近年來因交通事故而成為車用電子發展重點,主因在於汽車輪胎壓力過低不僅導致行車油耗增加,同時也容易引發嚴重交通意外而危及駕駛人與乘客的生命安全。有鑒於此,各國相繼訂定嚴格的行車安全法規,並逐漸強制車輛輪胎必須安裝胎壓監測系統,隨時提醒駕駛人輪胎的溫度或壓力等物理參數。
胎壓監測系統主要包括壓力計、胎壓信號回傳與感測器能量供應等三個技術範疇,由於壓力計相關技術已趨成熟,因此本文主要針對胎壓信號回傳與感測器能量供應進行研究。在胎壓信號回傳方面,本文提出槽孔耦合微帶天線,使用T型微帶線和環形槽孔作為饋入機制,改良後的耦合槽孔中心頻率為2450 MHz,頻寬約為440 MHz,其阻抗頻寬約為18 %;並可提升天線前後比約5 dB及改善背向輻射約5.5 dB使方向性更佳,且交叉極化比峰值可達-46 dB,高出傳統式6 dB。在可重置圓極化微帶天線則利用微帶線饋入接地面之全波長環型槽孔,藉由耦合激發圓形輻射金屬片,將二極體分別置入槽孔與饋入線殘枝,使天線產生水平及垂直極化,成為可重置線極化微帶天線;再藉由埋入十字型不等長槽孔在輻射金屬上,使天線成為可重置的圓極化天線。其成果為左旋極化之中心頻率與頻寬分別為2430 MHz與60 MHz,最大增益為4.5 dBic;右旋極化之中心頻率與頻寬分別為2445 MHz與40 MHz,且最大增益為4.3 dBic。
在感測器能量供應方面,本文提出無鐵芯與具鐵粉芯非接觸式供電等兩種作法;於無鐵芯非接觸式供電,利用圓形線圈設計及改善圓形線圈耦合係數,達成在半徑12 cm的供電線圈與相距2.2 cm的拾取線圈,當兩線圈圓心距離為10 cm時可得到最佳的感應電壓,使研製的供電系統可應用於12~16 Vdc的車用直流電源中。於具鐵粉芯之非接觸式供電系統,本文分為無電池與具電池兩種模式進行研究;經由實際運轉測試結果顯示,無電池設計方式無法完全取代一次性電池。因此本文使用電池容量較低之二次電池作為輔助供電之用,實驗結果驗證此種設計方式可達近似全時供電,且由實際運轉測試顯示當輪胎轉速越快,將可縮短二次電池之充電時間。本文分別以輪胎轉速為100 RPM與500 RPM進行實驗,在100 RPM低轉速之充電時間約介於8.9 ~ 10.5 hr,而500 RPM之充電時間約介於6.8 ~ 8.8 hr,一般行車速度可達1000 RPM以上,將可大幅縮短充電時間至3小時以內,驗證本系統具有產業之實用價值。

The development of automotive industry promotes the gradual rising of electronics related fields for cars, such as power driver system, video and music entertainment, driving recordeer, GPS, driving safety and alarm system. Among them, tire pressure for driving safety has become the main development of car electronics. The low tire pressure not only increases the coumption of vehicle fuel but also leads to serious car accident. Many countries have legislated strict traffic safety laws, and enforced the vehicle tires to install Tire Pressure Monitoring System (TPMS). TPMS is helpful to alert drivers of the real-time physical parameters such as tire temperature or tire pressure.
The range of the TPMS technology are conclude as tire pressure sensor, pressure single feedback, and the energy supply of pressure sensor. Due to the technology of tire sonsor is mature, only pressure single feedback and energy supplt of pressure sensor are disscussed. About pressure single feedback, in this dissertation, two microstrip antennas are presented. The one is that a novel aperture-coupling feed applied to the microstrip antenna is proposed and studied to reduce Cross-Polarization Levels (XPL) and improve front-to-back ratios. The impedance bandwidth determined by 10 dB return loss, is about 18% (440MHz) with respect to the center frequency 2450 MHz. The feed mechanism of the proposed antenna consists of an annular-ring coupling slot and a T-shaped feed line. The front-to-back ratios is 5 dB, and the peak value of XPL is -46 dB, which is better than traditional antenna about 6 dB. The other oneis that the slotted patch is fabricated on an FR4 substrate and excited by a microstrip feed line through the coupling of a full-wavelength annular-ring slot in the ground plane.The open stub of the feed line is divided into two segments and a diode is used to connect them. This method makes the antenna to generate horizontal or vertical polarization. And, by cross slot with unequal slot lengths, which is embedded on the circular radiating patch, to make the antenna become a Circularly-Polarized (CP) reconfigurable microstrip antenna. For the Left-Hand Circular Polarization (LHCP) case, the measured CP operating bandwidth, referred to 3 dB axial ratio, is 2.5% (60 MHz) with respect to the center frequency 2430 MHz, and the maxium gain is 4.5 dBic. As regards the Right-Hand Circular Polarization (RHCP) case, the CP operating bandwidth is about 1.6% (40 MHz) with respect to the center frequency 2445 MHz, and the maxium gain of the proposed antenna is 4.3 dBic.
About the energy supply of the pressure sensor, in this dissertation, the CPT concept is used to reduce the consumption of PB. For this reason, two types of CPT system (CPTS) are proposed; wheres are Core-Free CPTS (CFCPTS) and With-Core CPTS (WCCPTS). In CFCPTS design, the circle coil type is the contactless transformer. For CFCPTS, the coupling factor improvement of the two circles coil is used to reach the radius of the power supply coil as 12 cm and the gap between two coils as 2.2 cm. The optimal induced voltage is obtained while the distance between centers of two coils is about 10 cm, in which the wireless tire sensor also works well while the operation voltage of the implemented system is 12~16 Vdc. In another design, WCCPTS is investigated in two models, Battery-Free (BF) and With-Battery (WB), which are called as BFWCCPTS and WBWCCPTS respectively. The experimental result shows that the BFWCCPTS could not replace the traditional system with PB design. Consequently, WBWCCPTS is presented to solve this problem. The Secondary Battery (SB) capacity which used in WC design is smaller, and the purpose of the SB is treated as an auxiliary source with the WCCPTS. The experimental result shows that the design can approximately achieve full-time power supply and that the charging time of the SB can be shortened while the wheeling speed is faster. In the dissertation, the wheeling speed is set at 100 RPM and 500 RPM to test the battery charging time. The charging time of 100 RPM speed is between 8.9 ~ 10.5 hours, and the charging time of 500 RPM speed is between 6.8 ~ 8.8 hours. Therefore, the charging period could be reduced within 3 hour while wheeling speed reaches more than 1000 RPM in general. The proposed system is verified to provide practical value for the industry.

中文摘要 i
英文摘要 iii
謝 誌 vi
目 錄 vii
圖目錄 ix
表目錄 xv

第一章 緒論 1
1.1 研究背景與動機 1
1.2 本論文貢獻 6
1.3 論文架構 9
第二章 車用無線胎壓監測系統 11
2.1 車用胎壓監測系統 11
2.2 微帶天線設計 18
第三章 非接觸式車用無線胎壓監測供電系統 33
3.1 非接觸式車用無線胎壓監測供電系統簡介 33
3.2 供電線圈與拾取線圈之電路分析 36
3.3 供電線圈與拾取線圈最佳耦合位置之設計 43
3.4 輪胎模型與非接觸式無線胎壓監測之供電系統設計 47
第四章 非接觸式無線胎壓監測供電系統之實驗結果 51
4.1 車用無線胎壓監測系統耗能測試 51
4.3 線圈參數量測與輸出電壓測試結果 58
4.4 無線胎壓監測系統整體測試 74
第五章 鐵粉芯特性與靜態測試 77
5.1 鐵芯形式比較與選用依據 77
5.2 鐵芯特性探討與靜態測試 103
第六章 具鐵粉芯之非接觸式供電系統 111
6.1 具鐵芯無電池之非接觸式供電系統實際運轉測試 111
6.2 具鐵芯與電池之非接觸式供電系統動態運轉 118
第七章 結論與未來研究方向 136
7.1 結論 136
7.2 未來研究方向 139
參考文獻 143
個人資料 155
論文著作 156

圖目錄
圖1-1 應用非接觸式電源無線胎壓監測系統之供電系統分類圖 8
圖1-2 本文之論文規劃圖 9
圖2-1 無線胎壓監測系統之架構圖 17
圖2-2 環形槽孔耦合微帶天線幾何結構圖 21
圖2-3 Antenna與Reference A和Reference B在z軸上量測交叉極化比圖 22
圖2-4 傳統的細槽孔與180°反相雙細槽孔饋入之微帶天線幾何結構圖 23
圖2-5 Antenna A與Reference B於2400 MHz所量測的遠場輻射場型圖 24
圖2-6 具有六個H型負載槽孔的環形槽孔耦合微帶天線 25
圖2-7 天線B的反射損失結果 26
圖2-8 天線B的交叉極化結果 26
圖2-9 天線B前後比對頻率變化圖 26
圖2-10 天線B增益變化量對頻率變化圖 27
圖2-11 量測天線B於2410 MHz的輻射場形圖 27
圖2-12 圓極化切換之天線幾何結構圖 29
圖2-13 具有左/右旋圓極化切換之天線成品圖 30
圖2-14 天線反射損失與軸比圖的量測和模擬結果 31
圖2-15 量測天線在2440 MHz下的左旋圓極化輻射場形 31
圖2-16 量測天線在2440 MHz下的右旋圓極化輻射場形 32
圖3-1 無鐵芯之無線胎壓監測供電系統之架構圖 34
圖3-2 無線胎壓供電系統之供電線圈與拾取線圈示意圖 35
圖3-3 供電線圈與拾取線圈磁場分佈示意圖 37
圖3-4 本文所使用之諧振式電路架構圖 38
圖3-5 供電線圈與其諧振元件之等效電路圖 39
圖3-6 拾取線圈與諧振槽之等效電路圖 40
圖3-7 供電線圈與拾取線圈之積分符號示意圖 44
圖3-8 數種不同拾取線圈高度之互感量計算結果 46
圖3-9 本文所提輪胎模型外觀實體圖 47
圖3-10 供電線圈裝置於模型輪胎之實際位置說明 48
圖3-11 非接觸式無線胎壓監測系統之整體電路圖 49
圖4-1 無線胎壓監測系統耗能測試之等效電路圖 52
圖4-2 無線胎壓監測系統耗能測試之實體圖 52
圖4-3 無線胎壓監測系統耗能測試之開機暫態結果圖-Vdd=3.2 V-50秒 54
圖4-4 無線胎壓監測系統耗能測試之開機暫態結果圖-Vdd=2.2 V-50秒 54
圖4-5 無線胎壓監測系統電壓VTire與最大消耗電流iTire,max之關係圖 56
圖4-6 無線胎壓監測系統供應電壓Vtire與最大耗能PTire,max測試之關係圖 56
圖4-7 供電線圈物理尺寸標示與實體圖 58
圖4-8 拾取線圈物理尺寸標示與實體圖 59
圖4-9 輔助電感之物理尺寸標示與實體圖 59
圖4-10 供電線圈(2匝)-電感值與等效串聯電阻之量測結果 60
圖4-11 供電線圈(2匝)-品質因素之量測結果 61
圖4-12 拾取線圈(10匝)-電感值與等效串聯電阻之量測結果 61
圖4-13 拾取線圈(10匝)-拾取線圈品質因素之量測結果 62
圖4-14 輔助電感之電感值與等效串聯電阻量測結果結果 62
圖4-15 輔助電感線圈品質因素之量測結果圖 63
圖4-16 拾取與供電線圈圓心距離移動測試之實體圖 64
圖4-17 交流輸出電壓 與距離r之實驗結果 66
圖4-18 距離r=10 cm之最大輸出電壓 與電流 波形 66
圖4-19 距離r=13 cm之最小輸出電壓 與電流 波形 67
圖4-20 距離r=8 cm之最大輸出電壓 與電流 波形 67
圖4-21 距離r=14 cm之最小輸出電壓 與電流 波形 68
圖4-22 線圈諧振槽電壓 與直流負載電阻 變化之模擬與測試結果 70
圖4-23 直流輸出電壓 與直流負載電阻 變化之模擬與測試結果 71
圖4-24 直流負載電阻測試- =100 之輸出電壓波形 72
圖4-25 直流負載電阻測試- =100 k 之輸出電壓波形 73
圖4-26 本文研製非接觸式車用無線胎壓監測供電系統實體圖 75
圖4-27 本文研製之非接觸式無線胎壓監測系統供電暫態波形-Vcc=12 Vdc 76
圖4-28 本文研製之非接觸式無線胎壓監測系統供電暫態波形- Vcc=16 Vdc 76
圖5-1 常見的鐵芯外型圖 78
圖5-2 鐵芯EE型之尺寸外觀與模擬設定示意圖 81
圖5-3 鐵芯II直型之尺寸外觀與模擬設定示意圖 82
圖5-4 鐵芯II橫型之尺寸外觀與模擬設定示意圖 83
圖5-5 磁場分析結果圖-EE鐵芯-鐵芯距離D=0 mm 85
圖5-6 磁場分析結果圖-EE鐵芯-鐵芯距離D=1 mm 86
圖5-7 磁場分析結果圖-EE鐵芯-鐵芯距離D=5 mm 87
圖5-8 磁場分析結果圖-EE鐵芯-鐵芯距離D=20 mm 88
圖5-9 磁場分析結果圖-II直型鐵芯(─-─)-鐵芯距離D=0 mm 89
圖5-10 磁場分析結果圖-II鐵芯(─-─)-鐵芯距離D=20 mm 90
圖5-11 磁場分析結果圖-II橫型鐵芯(I-I)-鐵芯距離D=0 mm 91
圖5-12 磁場分析結果圖- II橫型鐵芯(I-I)-鐵芯距離D=20 mm 92
圖5-13 變壓器鐵芯之互感量參數模擬結果圖 94
圖5-14 單位鐵芯體積之鐵芯互感量(Mp.u.值)的計算結果 97
圖5-15 鐵芯線圈之互感量參數模擬結果圖 98
圖5-16 具鐵芯之非接觸式供電系統測試電路 100
圖5-17 鐵芯橫向位移d-開路電壓的測試結果(諧振電路的值) 101
圖5-18 鐵芯橫向位移d的互感量正規化之整理結果 102
圖5-19 具鐵芯之非接觸式變壓器實體圖 104
圖5-20 電路測試-固定鐵芯距離D之輸出電壓圖 107
圖5-21 電路測試-固定鐵芯距離D-各鐵芯參數下之輸出功率圖 109
圖6-1 第六章之章節規劃圖 111
圖6-2 輪胎轉速與實際速度之關係圖 112
圖6-3 具鐵芯無電池之實際運轉測試電路圖 113
圖6-4 無電池實際運轉測試之電容電壓 峰值測試結果 114
圖6-5 無電池運轉測試之電容電壓 波形-Cdc1=2.2 μF與Cdc1=10 μF 115
圖6-6 無電池運轉測試之電容電壓 波形-Cdc1=33 μF與Cdc1=47 μF 116
圖6-7 具鐵芯與電池之實際運轉測試電路 119
圖6-8 鈕扣型二氧化錳鋰電池ML2016之特性圖 120
圖6-9 每天耗能與儲能電量計算示意圖 123
圖6-10 市售兩種無線胎壓監測系統與其所使用之電池實體照片 125
圖6-11 具電池之實際運轉測試-電池電壓 波形-100 RPM與300 RPM 126
圖6-12 具電池之實際運轉測試-電池電壓 波形-500 RPM與700 RPM 127
圖6-13 無電池實際運轉測試之電池電壓CBAT測試結果 128
圖6-14 二氧化錳鋰充電電池之充電流程圖 129
圖6-15 二氧化鋰充電電池之放電歷程圖 131
圖6-16 二氧化鋰充電電池之電池電壓與放電電量關係圖 132
圖6-17 二氧化鋰充電電池的充電歷程圖 133
圖7-1 非接觸式變壓器之供電線圈形式 140
圖7-2 增加線圈耦合效率之方法 140


表目錄
表1-1 日本ASV發展進程三階段 2
表2-1 間接式與直接式胎壓監測系統比較表 15
表3-1 供電電路之參數表 50
表3-2 諧振電容與系統操作頻率參數表 50
表3-3 無線胎壓監測系統拾取電路之諧振元件與穩壓電路參數表 50
表4-1 耗能測試之系統參數表 53
表4-2 耗能測試之消耗電流與工作情況整理 57
表4-3 供電線圈與拾取線圈以及輔助電感之參數表 60
表4-4 圓心移動對輸出電壓變化之模擬參數表 64
表4-5 最高及最低電壓發生點與其電壓值結果表 68
表4-6 輸出電壓模擬參數表 69
表5-1 鐵芯外型的分類表 79
表5-2 不同鐵芯互感量之結論整理表 94
表5-3 鐵芯體積計算結果表 95
表5-4 不同鐵芯於不同鐵芯距離之Mp.u.值比較表 98
表5-5 橫向位移d測試之電路參數表 99
表5-6 鐵芯參數與測試頻率測量結果表 105
表6-1 具鐵芯與電池之實際運轉測試電路元件參數 113
表6-2 市售常見鈕扣型二氧化錳鋰電池之相關參數 120
表6-3 消耗與儲存電荷量之比較表 123
表6-4 市售鈕扣型二氧化錳鋰電池之相關參數表 124
表6-5 一次電池之平均耗能試算結果表 135
表6-6 本文二次電池充電實驗之非接觸式供電系統供能試算表 135


[1] 蔡聖豐,智慧車輛技術專輯主編前言,機械工業雜誌,332期,頁2-3,2010年。
[2] 陳隆泰,智慧車輛安全模組技術研發趨勢,機械工業雜誌,332期,頁15-22,2010年。
[3] 張光仁,日本ASV之發展現況,車輛研測資訊,頁22-27,2004年11月。
[4] M. Wycisk,汽車中的感測器應用,電子工程專輯,取自http://www.eettaiwan.com/ART_8800444453_480502_NT_cd394ed8.HTM,2006年。
[5] 游志成,胎壓監測系統~輪胎安全與省油的好幫手,TISI研究周報,頁1-4,2008年1月4日。
[6] 黃樑傑,全球汽車產業動態大追擊,車輛研測資訊,81期,頁8-14,2011年。
[7] Department of Transportation National Highway Traffic Safety Administration, “Tire Pressure Monitoring System,” Interview Dada Dot HS 809 316, 2001.
[8] 王岫晨,車用安全將邁入感測融合新時代,2011年03月15日,取自http://www.ctimes.com.tw/News/ShowNews.asp?O=HJV3FAPXS6CSA-0ME8&F=TPMS,2011年。
[9] 映興電子股份有限公司,TPMS時代、把關車輛安全,2011年4月24日,取自http://tpms.avertronics.com/big5/product.php?T_Id=1,2011年。
[10] 鍾榮峰,主動安全感測當道-車用MEMS行情看漲,2010年11月25日,取自http://www.ctimes.com.tw/News/ShowNews.asp?O=HJUBPAYN2Z DSA-0ME6&F=TPMS,2010年。
[11] J. Becker,輪胎壓力監控增強汽車的安全性,電子工程專輯,取自http://www.eettaiwan.com/ART_8800363795_617723_AN_76ce014c.HTM,2005年。
[12] 謝沐田,高低頻變壓器設計,全華科技,台北市,1993年。
[13] 陳運雙,變壓器理論與製作,音響論壇雜誌,2001年。
[14] 陳運雙,變壓器理論與製作,2005年6月10日,取自http://audioart. audionet.com.tw/158/12.htm,2005年。
[15] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, 2004.
[16] A. W. Green and J. T. Boys, “10 kHz inductively coupled power transfer-concept and control,” in Proc. IEE PEVSD’94, pp. 694-699, 1994.
[17] M. Takahashi, et. al., “Signal transmission system for high frequency magnetic telemetry for an artificial heart,” IEEE Trans. on Magn., vol. 37, no. 4, pp. 2921-2924, 2001.
[18] B. M. Song, R. Kratz, and S. Gurol, “Contactless inductive power pickup system for Maglev applications,” in Proc. IAS’02, vol. 3, pp. 1586-1591, 2002.
[19] S. Adachi, et.al., “Consideration on contactless power station with selfctive excitation to moving robot,” in Proc. IEEE INTERMAG’99, p. 1, 1999.
[20] J. Murakami, et. al., “Consideration on cordless power station –contactless power transmission system,” IEEE Trans. on Magn., vol. 32, no. 5, pp. 5037-5039, 1996.
[21] N. Xi and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors, ” in Proc. IEEE PESC’03, vol. 2, pp. 853-860, 2003.
[22] J. A. Ferreira, “Improved analytical modeling of conductive losses in magnetic components,” IEEE Trans. on Power Electron., vol. 9, no. 1, pp. 127-131, 1994.
[23] D. A. G. Pedder, A. D. Brown, and J. A. Skinner “A contactless electrical transmission system,” IEEE Trans. on Industrial Electronics, vol. 46, no. 1, pp. 23-30, Feb. 1999.
[24] Y. Jang and M. M. Jovanovic´, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. on Industrial Electronics, vol. 50, no. 3, pp. 520-527, Jan. 2003.
[25] C. G. Kim, et. al., “Design of a contactless battery charger for cellular phone,” IEEE Trans. on Industrial Electronics, vol. 48, no. 6, pp. 1238-1247, Dec. 2001.
[26] 工研院,非接觸式供電技術探討,電力電子月刊,3期,1995年。
[27] M. Ryu, et. al., “Analysis of the contactless power transfer system using modelling and analysis of the contactless transformer,” Industrial Electronics Society, IECON 2005, 32nd Annual Conference of IEEE, pp.1036-1042, Nov. 2005.
[28] N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. of IEEE Applied Power Electronics Conference, vol. 2, pp.841-847, Feb. 1997.
[29] H. Sakamoto and K. Harada, “A novel circuit for non-contact charging through electro-magnetic coupling,” in Proc. IEEE PESC, pp. 168-174, 1992.
[30] C. S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Power Electronics, vol. 19, no. 4, pp.995-1002, 2004.
[31] H. Ayano, et. al., “Highly efficient contactless electrical energy transmission system,” IEEE IECON, pp.1364-1369, 2002.
[32] G. B. Joung and B. H. Cho, “An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer,” IEEE Trans. Power Electronics, pp.1013-1022, Nov. 1998.
[33] Y. Hiraga, et. al., “Decentralized control of machines with the use of inductive transmission of power and signal,” IEEE Industry Applications Society Annual Meeting, vol. 2, pp.875-881, Oct. 1994.
[34] T. Bieler, et. al., “Contactless power and information transmission,” IEEE Trans. on Industry Applications, vol. 38, pp.1226-1272, Oct. 2002.
[35] R. Laouamer, M. Brunello, and J.P. Ferrieux, “A multi-resonant converter for non-contact charging with electromagnetic coupling,” in Proc. of IEEE Applied Power Electronics Conference, vol. 1, pp.450-457, Nov. 1997.
[36] A. J. Moradewicz and M. P. Kazmierkowski, “Contactless Energy Transfer System With FPGA-Controlled Resonant Converter,” IEEE Trans. on Industrial Electronics, vol. 57, no. 9, Sep. 2010.
[37] 陳良忠,次世代汽車電子發展及科技應用展望-AV66,車輛研究測試中心,頁1-12,2007年。
[38] 潘國良,車用輪胎之環保與安全議題漫談,車輛研測資訊,頁2-7,2009年6月。
[39] Motor Vehicle Tyres and Related Aspects (ENTR/02/045), The European Commission Enterprise Directorate General, TUV Automotive, 2003.
[40] 郭守穗,國產車的最新安全配備:TPMS胎壓監測系統,Mitsubishi 5230網站,2006年。
[41] 陳淑惠,橙的電子-車用胎壓監視系統開發應用及發展趨勢,車輛研測資訊,頁2-5,2009年2月。
[42] 映興電子股份有限公司,為何需要TPMS-安全,2011年4月24日,取自http://tpms.avertronics.com/big5/product_content.php?T_Id=2&F_Id=3,2011年。
[43] 黃健峰,爆胎易引發車禍-認識胎壓監測系統,南方日報,2011年4月1日。
[44] 映興電子股份有限公司,TPMS的類型,2011年4月24日,取自http://tpms.avertronics.com/big5/product.php?T_Id=3,2011年。
[45] 顏重光,汽車胎壓監視系統的設計方案,電子工程專輯,取自http://www.eettaiwan.com/ART_8800362329_480502_AN_678956f4.HTM,2005年。
[46] 唐文信,無線感測之胎壓檢測器研究,國立彰化師範大學電機工程研究所碩士論文,2010年。
[47] G. F. Khodae, J. Nourinia, and C. Ghobadi, “A practical miniaturized U-slot patch antenna with enhanced bandwidth,” Progress In Electromagnetics Research B, Vol. 3, pp.47–62, 2008.
[48] H. Boutayeb, T. A. Denidni, and M. Nedil, “Bandwidth widening techniques for directive antennas based on partially reflecting surfaces,” Progress In Electromagnetics Research, PIER 74, pp.407– 419, 2007.
[49] A. A. Abdelaziz, “Bandwidth enhansment of microstrip antenna,” Progress In Electromagnetics Research, PIER 63, pp.311– 317, 2006.
[50] A., M. Pirhadi, Hakkak, and F. Keshmiri, “Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-FED microstrip antenna,” Progress In Electromagnetics Research, PIER 61, pp.215–230, 2006.
[51] H. Liu and X. F. Hu, “Input impedance analysis of a microstrip annular-ring antenna with a thick substrate,” Progress In Electromagnetics Research, PIER 12, pp.177–204, 1996.
[52] T. Huynh, K. F. Lee, and R. Q. Lee, “Crosspolarisation characteristics of rectangular patch antennas,” Electronics Lett., Vol. 24, pp.463–464, 1998
[53] Z. N. Chen, et. al., “Experimental study on radiation performance of probe-fed suspended plate antennas,” IEEE Trans. on Antennas Propaga., Vol. 51, pp.1964–1971, 2003.
[54] P. Li, et. al., “A wideband patch antenna with cross-polarization suppression,” IEEE Antennas Wireless Propaga. Lett., Vol. 3, pp.211–214, 2004.
[55] Z. N. Chen and M. Y. W. Chia, “Broad-band suspended probefed plate antenna with low cross-polarization levels,” IEEE Trans. on Antennas Propaga., Vol. 51, pp.345–346, 2003.
[56] H. W. Lai and K. M. Luk, “Wideband patch antenna fed by printed meandering strip,” Microwave and Opt. Technol. Lett., Vol. 50, pp.188–192, 2008.
[57] A. Petosa, A. Ittipiboon, and N. Gagnon, “Suppression of unwanted probe radiation in wideband probe-fed microstrip patches,” Electronics Lett., Vol. 35, pp.355–357, 1999.
[58] C. H. K. Chin, et. al., “Broadband patch antenna with low cross-polarisation,” Electronics Lett., Vol. 43, pp.137–138, 2007.
[59] W. H. Hsu and K. L. Wong, “A dual capacitively fed broadband patch antenna with reduced cross-polarization radiation,” Microwave and Opt. Technol. Lett., Vol. 26, pp.169–171, 2000.
[60] Z. N. Chen and M. Y. W. Chia, “A novel center-slot-fed suspended plate antenna,” IEEE Trans. on Antennas Propaga., Vol. 51, pp.1407–1410, 2003.
[61] S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, “Design of wide-band aperture-stacked patch microstrip antennas,” IEEE Trans. on Antennas Propaga., Vol. 46, pp.1245–1251, 1998.
[62] T. W. Chiou and K. L. Wong, “Broad-band dual-polarized single microstrip patch antenna with high isolation and low cross polarization,” IEEE Trans. on Antennas Propaga., Vol. 50, pp.399–401, 2002.
[63] H. S. Shin and N. Kim, “Wideband and high-gain one-patch microstrip antenna coupled with H-shaped aperture,” Electronics Lett., Vol. 38, pp.1072–1073, 2002.
[64] D. M. Pozar and S. D. Targonski, “Improved coupling for aperture coupled microstrip antennas,” Electronics Lett., Vol. 27, pp.1129–1131, 1991.
[65] Y. J. Sung, T. U. Jang, and Y. S. Kim, “A reconfigurable microstrip antenna for switchable polarization,” IEEE Microwave Wireless Compon. Lett., Vol. 14, pp.534–536, 2004.
[66] M. K. Fries, M. Grani, and R. Vahldieck, “A reconfigurable slot antenna with switchable polarization,” IEEE Microwave Wireless Compon. Lett., Vol. 13, pp.490–492, 2003.
[67] M. Boti, L. Dussopt, and J. M. Laheurte, “Circularly polarized antenna with switchable polarization sense,” Electron. Lett., Vol. 36, pp.1518–1519, 2000.
[68] J. Ouyang, et. al., “A novel radiation pattern and frequency reconfigurable microstrip antenna on a thin substrate for wide-band and wide-angle scanning application,” Progress In Electromagnetics Research Letters, Vol. 4, pp.167–172, 2008.
[69] H. Fayad and P. Record, “Multi-feed dielectric resonator antenna with reconfigurable radiation pattern,” Progress In Electromagnetics Research, PIER 76, pp.341–356, 2007.
[70] W. B Wei, et. al., “Reconfigurable microstrip patch antenna with switchable polarization,” Progress In Electromagnetics Research, PIER 75, pp.63–68, 2007.
[71] M. A. S. Alkanhal and A. F. Sheta, “A novel dual-band reconfigurable square-ring microstrip antenna,” Progress In Electromagnetics Research, PIER 70, pp.337–349, 2007.
[72] S. V. Shynu, et. al., “Design of compact reconfigurable dual frequency microstrip antennas using varactor diodes,” Progress In Electromagnetics Research, PIER 60, pp.197–205, 2006.
[73] M. A. Saed, “Reconfigurable broadband microstrip antenna fed by a coplanar waveguide,” Progress In Electromagnetics Research, PIER 55, pp.227–239, 2005.
[74] J. S. Row and J. F. Wu, “Aperture-coupled microstrip antennas with switchable polarization,” IEEE Trans. on Antennas Propagat., Vol. 54, pp.2686–2691, 2006.
[75] J. S. Row and R. H. Chen, “Reconfigurable slot-coupled microstrip antenna with polarization diversity,” IET Microwaves, Antennas & Propagat., Vol. 1, pp.798–802, 2007.
[76] G. A. Kendir, “An Optimal Design Methodology for Inductive Power Link With Class-E Amplifier,” IEEE Circuits and System-I: Regular Papers, Vol. 52, No. 5, pp.857-866, May 205.
[77] F. W. Grover, “The Calculation of the Mutual Inductance of Circular Filaments in Any Desired Positions,” Proceeding of the I.R.E., pp.620-629, Oct. 1944.
[78] F. W. Grover, Inductance Calculation Working Formulas and Tables. Research Triangle Park, NC: Instrument Society of America, 1973.
[79] Renata Batteries, “Lithium Manganese Dioxide Battery: CR-series datasheet”.
[80] Maxwell Crop., “Lithium Manganese Dioxide Rechargeable Batteries: ML2016 datasheet”

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top