[1] 蔡聖豐,智慧車輛技術專輯主編前言,機械工業雜誌,332期,頁2-3,2010年。
[2] 陳隆泰,智慧車輛安全模組技術研發趨勢,機械工業雜誌,332期,頁15-22,2010年。
[3] 張光仁,日本ASV之發展現況,車輛研測資訊,頁22-27,2004年11月。[4] M. Wycisk,汽車中的感測器應用,電子工程專輯,取自http://www.eettaiwan.com/ART_8800444453_480502_NT_cd394ed8.HTM,2006年。
[5] 游志成,胎壓監測系統~輪胎安全與省油的好幫手,TISI研究周報,頁1-4,2008年1月4日。
[6] 黃樑傑,全球汽車產業動態大追擊,車輛研測資訊,81期,頁8-14,2011年。
[7] Department of Transportation National Highway Traffic Safety Administration, “Tire Pressure Monitoring System,” Interview Dada Dot HS 809 316, 2001.
[8] 王岫晨,車用安全將邁入感測融合新時代,2011年03月15日,取自http://www.ctimes.com.tw/News/ShowNews.asp?O=HJV3FAPXS6CSA-0ME8&F=TPMS,2011年。
[9] 映興電子股份有限公司,TPMS時代、把關車輛安全,2011年4月24日,取自http://tpms.avertronics.com/big5/product.php?T_Id=1,2011年。
[10] 鍾榮峰,主動安全感測當道-車用MEMS行情看漲,2010年11月25日,取自http://www.ctimes.com.tw/News/ShowNews.asp?O=HJUBPAYN2Z DSA-0ME6&F=TPMS,2010年。
[11] J. Becker,輪胎壓力監控增強汽車的安全性,電子工程專輯,取自http://www.eettaiwan.com/ART_8800363795_617723_AN_76ce014c.HTM,2005年。
[12] 謝沐田,高低頻變壓器設計,全華科技,台北市,1993年。
[13] 陳運雙,變壓器理論與製作,音響論壇雜誌,2001年。
[14] 陳運雙,變壓器理論與製作,2005年6月10日,取自http://audioart. audionet.com.tw/158/12.htm,2005年。
[15] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, 2004.
[16] A. W. Green and J. T. Boys, “10 kHz inductively coupled power transfer-concept and control,” in Proc. IEE PEVSD’94, pp. 694-699, 1994.
[17] M. Takahashi, et. al., “Signal transmission system for high frequency magnetic telemetry for an artificial heart,” IEEE Trans. on Magn., vol. 37, no. 4, pp. 2921-2924, 2001.
[18] B. M. Song, R. Kratz, and S. Gurol, “Contactless inductive power pickup system for Maglev applications,” in Proc. IAS’02, vol. 3, pp. 1586-1591, 2002.
[19] S. Adachi, et.al., “Consideration on contactless power station with selfctive excitation to moving robot,” in Proc. IEEE INTERMAG’99, p. 1, 1999.
[20] J. Murakami, et. al., “Consideration on cordless power station –contactless power transmission system,” IEEE Trans. on Magn., vol. 32, no. 5, pp. 5037-5039, 1996.
[21] N. Xi and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors, ” in Proc. IEEE PESC’03, vol. 2, pp. 853-860, 2003.
[22] J. A. Ferreira, “Improved analytical modeling of conductive losses in magnetic components,” IEEE Trans. on Power Electron., vol. 9, no. 1, pp. 127-131, 1994.
[23] D. A. G. Pedder, A. D. Brown, and J. A. Skinner “A contactless electrical transmission system,” IEEE Trans. on Industrial Electronics, vol. 46, no. 1, pp. 23-30, Feb. 1999.
[24] Y. Jang and M. M. Jovanovic´, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. on Industrial Electronics, vol. 50, no. 3, pp. 520-527, Jan. 2003.
[25] C. G. Kim, et. al., “Design of a contactless battery charger for cellular phone,” IEEE Trans. on Industrial Electronics, vol. 48, no. 6, pp. 1238-1247, Dec. 2001.
[26] 工研院,非接觸式供電技術探討,電力電子月刊,3期,1995年。
[27] M. Ryu, et. al., “Analysis of the contactless power transfer system using modelling and analysis of the contactless transformer,” Industrial Electronics Society, IECON 2005, 32nd Annual Conference of IEEE, pp.1036-1042, Nov. 2005.
[28] N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. of IEEE Applied Power Electronics Conference, vol. 2, pp.841-847, Feb. 1997.
[29] H. Sakamoto and K. Harada, “A novel circuit for non-contact charging through electro-magnetic coupling,” in Proc. IEEE PESC, pp. 168-174, 1992.
[30] C. S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Power Electronics, vol. 19, no. 4, pp.995-1002, 2004.
[31] H. Ayano, et. al., “Highly efficient contactless electrical energy transmission system,” IEEE IECON, pp.1364-1369, 2002.
[32] G. B. Joung and B. H. Cho, “An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer,” IEEE Trans. Power Electronics, pp.1013-1022, Nov. 1998.
[33] Y. Hiraga, et. al., “Decentralized control of machines with the use of inductive transmission of power and signal,” IEEE Industry Applications Society Annual Meeting, vol. 2, pp.875-881, Oct. 1994.
[34] T. Bieler, et. al., “Contactless power and information transmission,” IEEE Trans. on Industry Applications, vol. 38, pp.1226-1272, Oct. 2002.
[35] R. Laouamer, M. Brunello, and J.P. Ferrieux, “A multi-resonant converter for non-contact charging with electromagnetic coupling,” in Proc. of IEEE Applied Power Electronics Conference, vol. 1, pp.450-457, Nov. 1997.
[36] A. J. Moradewicz and M. P. Kazmierkowski, “Contactless Energy Transfer System With FPGA-Controlled Resonant Converter,” IEEE Trans. on Industrial Electronics, vol. 57, no. 9, Sep. 2010.
[37] 陳良忠,次世代汽車電子發展及科技應用展望-AV66,車輛研究測試中心,頁1-12,2007年。[38] 潘國良,車用輪胎之環保與安全議題漫談,車輛研測資訊,頁2-7,2009年6月。[39] Motor Vehicle Tyres and Related Aspects (ENTR/02/045), The European Commission Enterprise Directorate General, TUV Automotive, 2003.
[40] 郭守穗,國產車的最新安全配備:TPMS胎壓監測系統,Mitsubishi 5230網站,2006年。
[41] 陳淑惠,橙的電子-車用胎壓監視系統開發應用及發展趨勢,車輛研測資訊,頁2-5,2009年2月。[42] 映興電子股份有限公司,為何需要TPMS-安全,2011年4月24日,取自http://tpms.avertronics.com/big5/product_content.php?T_Id=2&F_Id=3,2011年。
[43] 黃健峰,爆胎易引發車禍-認識胎壓監測系統,南方日報,2011年4月1日。
[44] 映興電子股份有限公司,TPMS的類型,2011年4月24日,取自http://tpms.avertronics.com/big5/product.php?T_Id=3,2011年。
[45] 顏重光,汽車胎壓監視系統的設計方案,電子工程專輯,取自http://www.eettaiwan.com/ART_8800362329_480502_AN_678956f4.HTM,2005年。
[46] 唐文信,無線感測之胎壓檢測器研究,國立彰化師範大學電機工程研究所碩士論文,2010年。[47] G. F. Khodae, J. Nourinia, and C. Ghobadi, “A practical miniaturized U-slot patch antenna with enhanced bandwidth,” Progress In Electromagnetics Research B, Vol. 3, pp.47–62, 2008.
[48] H. Boutayeb, T. A. Denidni, and M. Nedil, “Bandwidth widening techniques for directive antennas based on partially reflecting surfaces,” Progress In Electromagnetics Research, PIER 74, pp.407– 419, 2007.
[49] A. A. Abdelaziz, “Bandwidth enhansment of microstrip antenna,” Progress In Electromagnetics Research, PIER 63, pp.311– 317, 2006.
[50] A., M. Pirhadi, Hakkak, and F. Keshmiri, “Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-FED microstrip antenna,” Progress In Electromagnetics Research, PIER 61, pp.215–230, 2006.
[51] H. Liu and X. F. Hu, “Input impedance analysis of a microstrip annular-ring antenna with a thick substrate,” Progress In Electromagnetics Research, PIER 12, pp.177–204, 1996.
[52] T. Huynh, K. F. Lee, and R. Q. Lee, “Crosspolarisation characteristics of rectangular patch antennas,” Electronics Lett., Vol. 24, pp.463–464, 1998
[53] Z. N. Chen, et. al., “Experimental study on radiation performance of probe-fed suspended plate antennas,” IEEE Trans. on Antennas Propaga., Vol. 51, pp.1964–1971, 2003.
[54] P. Li, et. al., “A wideband patch antenna with cross-polarization suppression,” IEEE Antennas Wireless Propaga. Lett., Vol. 3, pp.211–214, 2004.
[55] Z. N. Chen and M. Y. W. Chia, “Broad-band suspended probefed plate antenna with low cross-polarization levels,” IEEE Trans. on Antennas Propaga., Vol. 51, pp.345–346, 2003.
[56] H. W. Lai and K. M. Luk, “Wideband patch antenna fed by printed meandering strip,” Microwave and Opt. Technol. Lett., Vol. 50, pp.188–192, 2008.
[57] A. Petosa, A. Ittipiboon, and N. Gagnon, “Suppression of unwanted probe radiation in wideband probe-fed microstrip patches,” Electronics Lett., Vol. 35, pp.355–357, 1999.
[58] C. H. K. Chin, et. al., “Broadband patch antenna with low cross-polarisation,” Electronics Lett., Vol. 43, pp.137–138, 2007.
[59] W. H. Hsu and K. L. Wong, “A dual capacitively fed broadband patch antenna with reduced cross-polarization radiation,” Microwave and Opt. Technol. Lett., Vol. 26, pp.169–171, 2000.
[60] Z. N. Chen and M. Y. W. Chia, “A novel center-slot-fed suspended plate antenna,” IEEE Trans. on Antennas Propaga., Vol. 51, pp.1407–1410, 2003.
[61] S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, “Design of wide-band aperture-stacked patch microstrip antennas,” IEEE Trans. on Antennas Propaga., Vol. 46, pp.1245–1251, 1998.
[62] T. W. Chiou and K. L. Wong, “Broad-band dual-polarized single microstrip patch antenna with high isolation and low cross polarization,” IEEE Trans. on Antennas Propaga., Vol. 50, pp.399–401, 2002.
[63] H. S. Shin and N. Kim, “Wideband and high-gain one-patch microstrip antenna coupled with H-shaped aperture,” Electronics Lett., Vol. 38, pp.1072–1073, 2002.
[64] D. M. Pozar and S. D. Targonski, “Improved coupling for aperture coupled microstrip antennas,” Electronics Lett., Vol. 27, pp.1129–1131, 1991.
[65] Y. J. Sung, T. U. Jang, and Y. S. Kim, “A reconfigurable microstrip antenna for switchable polarization,” IEEE Microwave Wireless Compon. Lett., Vol. 14, pp.534–536, 2004.
[66] M. K. Fries, M. Grani, and R. Vahldieck, “A reconfigurable slot antenna with switchable polarization,” IEEE Microwave Wireless Compon. Lett., Vol. 13, pp.490–492, 2003.
[67] M. Boti, L. Dussopt, and J. M. Laheurte, “Circularly polarized antenna with switchable polarization sense,” Electron. Lett., Vol. 36, pp.1518–1519, 2000.
[68] J. Ouyang, et. al., “A novel radiation pattern and frequency reconfigurable microstrip antenna on a thin substrate for wide-band and wide-angle scanning application,” Progress In Electromagnetics Research Letters, Vol. 4, pp.167–172, 2008.
[69] H. Fayad and P. Record, “Multi-feed dielectric resonator antenna with reconfigurable radiation pattern,” Progress In Electromagnetics Research, PIER 76, pp.341–356, 2007.
[70] W. B Wei, et. al., “Reconfigurable microstrip patch antenna with switchable polarization,” Progress In Electromagnetics Research, PIER 75, pp.63–68, 2007.
[71] M. A. S. Alkanhal and A. F. Sheta, “A novel dual-band reconfigurable square-ring microstrip antenna,” Progress In Electromagnetics Research, PIER 70, pp.337–349, 2007.
[72] S. V. Shynu, et. al., “Design of compact reconfigurable dual frequency microstrip antennas using varactor diodes,” Progress In Electromagnetics Research, PIER 60, pp.197–205, 2006.
[73] M. A. Saed, “Reconfigurable broadband microstrip antenna fed by a coplanar waveguide,” Progress In Electromagnetics Research, PIER 55, pp.227–239, 2005.
[74] J. S. Row and J. F. Wu, “Aperture-coupled microstrip antennas with switchable polarization,” IEEE Trans. on Antennas Propagat., Vol. 54, pp.2686–2691, 2006.
[75] J. S. Row and R. H. Chen, “Reconfigurable slot-coupled microstrip antenna with polarization diversity,” IET Microwaves, Antennas & Propagat., Vol. 1, pp.798–802, 2007.
[76] G. A. Kendir, “An Optimal Design Methodology for Inductive Power Link With Class-E Amplifier,” IEEE Circuits and System-I: Regular Papers, Vol. 52, No. 5, pp.857-866, May 205.
[77] F. W. Grover, “The Calculation of the Mutual Inductance of Circular Filaments in Any Desired Positions,” Proceeding of the I.R.E., pp.620-629, Oct. 1944.
[78] F. W. Grover, Inductance Calculation Working Formulas and Tables. Research Triangle Park, NC: Instrument Society of America, 1973.
[79] Renata Batteries, “Lithium Manganese Dioxide Battery: CR-series datasheet”.
[80] Maxwell Crop., “Lithium Manganese Dioxide Rechargeable Batteries: ML2016 datasheet”