(54.236.58.220) 您好!臺灣時間:2021/03/01 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:施宗宏
論文名稱:Cu(In1,Ga1-x)Se2薄膜太陽電池濺鍍於SS431不鏽鋼基板
指導教授:林義成林義成引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:撓曲補鈉四元靶共濺鍍免硒化退火處理
外文關鍵詞:CIGSco-sputterquaternary targetbendingsodium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究採用磁控濺鍍法製備銅銦鎵硒(Cu(In,Ga)Se2, CIGS),沉積於Mo/SiOx/SS431基板上,並使用鉬鈉靶添加鈉研究其對CIGS的結晶性。而實驗中經由氣氛爐中退火,並針對膜層中施以撓曲的應力,對薄膜表面進行破壞分析。研究中發現當CIGS後製程時,若以濺鍍製程製備鋁電極,會造成窗口層受到破壞,改以熱蒸鍍的方式減少AZO受到破壞。研究結果由共濺鍍銅與CIGS四元靶經一階段免硒化退火熱處理,亦可獲得具有黃銅礦結構之薄膜, 且可達到Cu/III在0.95以下Ga/III在0.3以下,並且電性為弱P型半導體載子遷移率大於6cm2V-1S-1,且拉曼位移與XRD有較佳的鍵結與結晶性,再添加適量的鈉可增加CIGS的結晶性。實驗中結論得之Mo對於SiOx的附著強度不如SiOx對不鏽鋼基板這麼好。而後製程中,當以1120瓦的功率蒸鍍鋁在鍍率1.8nm以下較不會破壞窗口層的完整性。
In this study with two stages, the first prepared by magnetron sputtering of CIGS by quaternary target deposited in Mo/SiOx/SS431, and add sodium increased the grain size of CIGS. The experiment by argon Gas atmosphere annealing to achieve the ideal Chemistry dosage and structural characteristics of chalcopyrite, and for film in bending stress imposed on the film surface damage analysis. The second study found that after the CIGS process, the terms of sputtering of aluminum electrode preparation process will cause the window layer is damaged. It is replaced by thermal evaporation approach to reducing damage to AZO. The result of quaternary target and copper target co-sputtering by a phase of selenium-free anneal can be obtained with a chalcopyrite structure of the film. The composition of CIGS sample was approach to the ideal stoichiometry that Cu / III below 0.95 and Ga / III below 0.3.And electric of the weak P-type semiconductor carrier mobility more than 6cm2V-1S-1. Raman shift and XRD have the better crystalline. Then add 2.8% of sodium can increase the crystalline CIGS chalcopyrite and enhance the bonding. In the experiment, adhesion of SS431 with SiOx is better than Mo with SiOx. Evaporation power of 160A below can decrease damage aluminum AZO and ZnO window layer completely.




目次
頁次
摘要................................................. I
謝誌……....................................................................................................... III
目次……....................................................................................................... IV
表次………………………………………………………..………………. VII
圖次………………………………………………………..………………. VIII

第一章 緒 論……………………………………………..……………... 1
1-1 研究動機……………………………………………….…………. 1
1-2 研究貢獻……………………………………………….…………. 2
1-3 名詞解釋……………………………………………….…………. 3

第二章 理論分析與文獻回顧…………………………………….….…. 4
2-1 太陽能電池基本原理……………………………………….…… 4
2-2 薄膜太陽能電池………………..……………................................... 6
2-3 基板條件……………………………................................................. 10
2-4 吸收層特性…………..….……....................................................... 12
2-5 CIGS所需不銹鋼基板之要求…………………………………… 16
2-6 CIGS阻隔層的影響……………………………………………… 17
2-7 鈉元素對CIGS元件影響……………………………………….. 20
2-8 外力撓曲對薄膜之影響…………………………………………… 21
2-9 CIGS沉積在可撓式金屬基板遭遇問題及解決方法…………… 24

第三章 研究方法……………………………….……………..…. 26
3-1 實驗流程…………………………………………………………..…... 26
3-2 實驗材料與試片準備………………………….……………………… 28
3-3 鍍膜參數與步驟………………………………………………………. 30
3-4 退火參數與步驟……………………………………………………..... 35
3-5 薄膜特性分析………………………………………………………… 37
3-5-1金屬基板化學成分量測分析…………………………………… 37
3-5-2薄膜沉積率量測…………………………………………..…….. 38
3-5-3薄膜表面成分分析………………………………...……..…..…... 38
3-5-4薄膜微結構分析……………………………...………………… 39
3-5-5薄膜表面及截面形貌量測……………………………...………. 40
3-5-6外力撓曲測試……………………………...…………………… 41
3-5-7拉曼光譜……………………………...………………………… 43
3-5-8薄膜化學性質分析……………………...……………………… 44
第四章 結果與討論………………………………………….….... 45
4-1 CIGS吸收層濺鍍參數分析.………………………………………… 45
4-2 CIGS吸收層退火參數分析……... .………………………………… 50
4-3 CIGS吸收層共濺鍍製程……...……...……...……...……...……...… 55
4-4 Mo/SiOx/SS431的可撓性測試…...……...……...……...……....…… 61
4-5 鈉元素的添加………………………………………………………… 63
4-6 製備鋁電極對窗口層破壞分析……………………………………… 68

第五章 結論與未來研究………………………………….……….……. 71
5-1 結論…………………………………………………….……….……... 71
5-2 未來研究……………………………………………….……….……... 72

參考文獻…………………………………………………….……….……. 73










表次

表2-1 CIGS所需不銹鋼基板之各項要求…………….……….……….. 16
表2-2 阻隔層退火熱處理前之阻隔性比較.............................................. 17
表2-3 CIGS 沉積在可撓式金屬基板遭遇問題及解決方法…………… 24
表3-1 CIGS 合金靶材化學計量成分表..................................................... 28
表4-1 CIGS薄膜成分…………………………………………………….. 46
表4-2 是以固定60瓦補銅後經798K退火後成份的差異…………..… 56
表4-3 沉積壓力1.3mPa基板溫度473k蒸鍍沉積鋁電極前後阻值變化 70












圖次

圖2-1 太陽能電池的工作原理…………….……………………………. 5
圖2-2 CIGSS不同含量能隙變化………………………………………. 7
圖2-3 CIGS 薄膜太陽能電池結構圖…………………………………. 9
圖2-4 可撓式薄膜太陽能電池Roll-to-roll製程示意圖……………… 11
圖2-5 (a)閃鋅礦結構(b)黃銅礦結構……………………………………. 12
圖2-6 Cu2Se–In2Se3 二元相圖……………………….………………... 14
圖2-7 CuInSe2 之相類似的二元相圖是延著藉由不同的熱處理溫度分析和微結構相圖分析所建立的 In2Se3 和Cu2Se 二元混合物曲線……………………………………………………………….. 15
圖2-8 (a)CIGS/Mo/SLG (b)CIGS/Mo/Stainless steel (c)CIGS/Mo/SiOx/ Stainless steel 的 XRD 圖……………………………………… 18
圖2-9 CIGS 薄膜表面粗糙度量測圖(a)CIGS/Mo/Stainless steel, (b)CIGS/Mo/SiOx/Stainless steel………………………………… 19
圖2-10 受彎曲後 ITO 薄膜破壞情況…………………………………. 21
圖2-11 比較有無緩衝層受彎曲後 ITO 薄膜破壞情況………………. 22
圖2-12 工作壓力0.67 Pa,功率80 W,脈衝頻率19 kHz,膜厚 100 nm、150 nm、200 nm,撓曲次數對電阻值的影響…………………… 23
圖2-13 工作壓力0.67 Pa,功率80 W,脈衝頻率19 kHz,膜厚 200 nm,外力撓曲測試薄膜表面形貌 SEM 圖(a) 102 次、(b) 103 次、(c) 104 次、(d) 105 次…………………………………………… 23
圖3-1 實驗流程圖………………………………………………………... 27
圖3-2 實驗材料實體照片.......................................................................... 29
圖3-3 薄膜濺鍍系統示意圖.….................................................................. 30
圖3-4 鉬電極薄膜比例設定定義圖........................................................... 31
圖3-5 薄膜濺鍍系統示意圖……………………………………………... 32
圖3-6 前驅膜層堆疊示意圖…………………………………………….. 33
圖3-7 Al電極製備完整結構圖…………………………….…………… 34
圖3-8 真空氣氛熱處理爐系統示意圖..................................................... 35
圖3-9 輝光放電分光儀.............................................................................. 37
圖3-10 薄膜測厚儀..................................................................................... 38
圖3-11 X光能量分散光譜.......................................................................... 39
圖3-12 X-ray 繞射儀................................................................................... 40
圖3-13 熱場發射掃描式電子顯微鏡.......................................................... 41
圖3-14 (a)伸長量檢測儀示意圖(b)撓曲機構放大圖.................................. 42
圖3-15 拉曼光譜儀..................................................................................... 43
圖3-16 二次離子質譜儀............................................................................. 44
圖4-1 不同功率在壓力0.67pa工作距離5cm的沉積率........................... 47
圖4-2 不同功率在壓力0.67pa經798K退火後成份變化……………… 48
圖4-3 以不同功率製備CIGS/MO/SiOx/SS431之吸收層經798K持溫20min退火後情形(4X) (a) 125W (b)150W.................................. 49
圖4-4 CIGS/Mo/SiOx/SS431經熱處理798K前後XRD繞射圖…….. 51
圖4-5 CIGS/Mo/SiOx/SS431經熱處理798K前後拉曼偏移圖................ 52
圖4-6 功率125W工作壓力0.67Pa濺鍍1μm的CIGS經798K退火後薄膜SEM……………………………………………………… 54
圖4-7 於濺鍍過程中以功率60W co-sputter Cu經798K退火後的電性變化............................................................................................... 57
圖4-8 於濺鍍過程中以plused DC 功率60W co-sputter Cu經798K退火後XRD繞射圖(a)1.6%(b)2.2%(c)2.8%(d)3.3%....................... 58
圖4-9 以Fe-SEM 所拍攝的SEM得截面圖其中(Cu+CIGS)/CIGS的值為(a)1.6%(b)2.2%(c)2.8%(d)3.3%................................................ 59
圖4-10 當其中(Cu+CIGS)/CIGS的值(a)1.6%(b)2.2%(c)2.8%(d)3.3%
所量測的Raman shift................................................................ 60
圖4-11 Mo(700nm R為66)/SiOx (300nm)/SS431(0.5mm)撓曲度(a)0mm (b)0.25mm (c)0.5mm (d)0.75mm (e)1mm (f)1.25mm (g)1.5mm (h)1.75mm 的表面形貌………………......................................... 62
圖4-12 調變不同的Mo:Na/Mo後經798K退火後XRD繞射圖(a) 0% (b) 1.4% (c) 2.8% (d) 4.2% .................................................................. 64
圖4-13 添加不同的Mo:Na後經798K退火後Raman繞射圖................. 65
圖4-14 添加不同的Mo:Na後EDX的Mapping圖(a)1.4% (b)2.8% (c)4.2% .................................................................... 66
圖4-15 添加Mo:Na/Mo為2.8%經798K退火後SIMS縱深分析圖........ 67
圖4-16 Mo/ZnO/AZO濺鍍鋁(a)前(b)後的SEM cross-section................... 69


[1] M. Kaelin, D. Rudmann, and A.N. Tiwari, “Low cost processing of CIGS thin film solar cells”, Solar Energy, 77, 2004, pp. 749-756.
[2] F. Kessler, D. Herrmann, M. Powalla, “ Approaches to flexible CIGS thin-film solar cells” , Thin Solid Films, 2005, pp. 491– 498.
[3] S.O. Kasap, “Optoelectronics and photonics priciples and practices”, Publishing House of Electronics Industry, 2003.
[4] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor”, Research and Applications, 16, 2008, pp. 235-239.
[5] X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells”, Solar Energy, 77, 2004, pp. 803-814.
[6] M. Ba¨r, W. Bohne, J. Ro¨hrich, E. Strub, S. Lindner, M.C. Lux-Steiner, Ch.-H. Fischer, “ Determination of the band gap depth profile of the penternary Cu(In(1-x)Ga(x))(SySe(1-y))2 chalcopyrite from its compositional gradient,” J. Appl. Phys. 96 , 2004, pp. 3857–3860.
[7] H.W. Schock, “Thin film photovoltaics”, Applied Surface Science, 92, 1996, pp. 606-616.
[8] 黃惠良, “太陽能電池”, 五南圖書出版公司, 2009。
[9] B.J. Stanbery, “Copper indium selenides and related materials for photovoltaic devices”, Critical Reviews in Solid State and Materials Sciences, 27, 2002, pp. 73-117.
[10] M. Lammer, U. Klemm, M. Powalla, “Sodium co-evaporation for low temperature Cu(In,Ga)Se2 deposition”, Thin Solid Films, 387, 2001, pp. 33-36.

[11] M. Lammer , R. Kniese, M. Powalla, “In-line deposited Cu(In,Ga)Se2 solar cells: influence of deposition temperature and Na co-evaporation on carrier collection “ Thin Solid Films, 451-452, 2004, pp. 175-178.
[12] K. Granath, M. Bodegard, L. Stolt, “The effect of NaF on Cu(In, Ga)Se2 thin film solar cells “ Solar Energy Materials & Solar Cells , 60, 2000,pp. 279-293.
[13] F. Kessler, D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules”, Solar Energy, 77, 2004, pp. 685-695.
[14] K. Otte, “Flexible Cu(In,Ga)Se2 thin-film solar cells for space application”, Thin Solid Films, 511-512, 2006, pp. 613-622.
[15] S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, Keiichiro Sakurai, Shigeru Niki“Development of high-efficiency flexible Cu(In,Ga)Se2 solar cells: A study ofalkali doping effects on CIS, CIGS, and CGS using alkali-silicate glass thin layers”, Current Applied Physics, 10, 2010, pp, S154–S156.
[16] W.E. Devaney, W.S. Chen, J.M. Stewart, and R.A. Mickelsen, “Structure and properties of high efficiency ZnO/CdZnS/CuInS/CuInGaSe2 solar cells”, IEEE Transaction on Electron Devices, 37, 1990, pp. 428-433.
[17] T. Markvart and L. Castaner, “Solar cells: materials and manufacture and operation”, Oxford, Elsevier Advanced Technology, 2005.
[18] B.J. Stanbery, “Copper indium selenides and related materials for photovoltaic devices”, Critical Reviews in Solid State and Materials Sciences, 27, 2002, pp. 73-117.
[19] M. Burgelman and A. Niemegeers, “Calculation of CIS and CdTe module efficiencies”, Solar Energy Materials & Solar Cells, 51, 1998, pp. 129-143.
[20] B.M. Basol, V.K. Kapur, C.R. Leidholm, A. Halani, “Flexible and light weight copper indium diselenide solar cells”, 25th Passaic Valley Sewerage Commissioners, 13-17, 1996, pp. 157-162.
[21] K. Herz, “Dielectric barriers for flexible CIGS solar modules”, Thin Solid Films, 403-404, 2002, pp. 384-389.
[22] T. Satoh, Y. Hashimoto, S. Shimakawa, S. Hayashi, T. Negami “Cu(In,Ga)Se2 solar cells on stainless steel substrates covered with insulating layers”, Solar Energy Materials & Solar cells, 75, 2003, pp. 65-71.
[23] Y. Sakurai, A. Yamada, P. Fons, K. Matsubara, T. Kojima, S. Niki, T. Baba,N. Tsuchimochi, Y. Kimura, H. Nakanishi, “HAdjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates”, Journal of Physics and Chemistry of Solids 64 , 2003, pp. 1877–1880.
[24] R. Caballero , C.A. Kaufmann , T. Eisenbarth , M. Cancela , R. Hesse , T. Unold , A. Eicke ,R. Klenk , H.W. Schock “The influence of Na on low temperature growth of CIGS thin film solar cells onpolyimide substrates”, Thin Solid Films, 517, 2009, pp. 2187-2190.
[25] Y. Leterrier, C. Fischer, L. Medico, F. Demarco, J.A.E. Manson, P. Bouten, J. DeGoede, J.A. Nairn, “Mechanical properties of transparent functional thin films for flexible displays”, 46th Annual Technical Conference Proceedings, 2003, pp. 169-175.
[26] S.K. Park, J.I. Han, D.G. Moon, W.K. Kim, “Mechanical stability of externally deformed indium-tin-oxide films on polymer substrates”, Japanese Journal of Applied Physics, 42, 2003, pp. 623-629.
[27] Y.C. Lin, W.Q. Shi, Z.Z. Chen, “Effect of deflection on the mechanical and optoelectronic properties of indium tin oxide films deposited on polyethylene terephthalate substrates by pulse magnetron sputtering”, Thin Solid Films, 517, 2009, pp. 1701-1705.
[28] S. Khelifia,, A. Belghachib, J. Lauwaerta,, K. Decocka, J. Wienked, R. Caballeroe, C. Kaufmanne, M. Burgelmana “ Characterization of flexible thin film CIGSe solar cells grown on different metallic foil substrates ”, Energy Procedia 2 , 2010, pp. 109–117.
[29] Y. Hashimoto, T. Satoh, S. Shimakawa, T. Negami, “High efficiency CIGS solar cell on flexible stainless steel”, 3rd World Conference on Photovoltaic Energy Conversion, 2003, pp. 574-577.
[30] J.H. Yun, K.H. Kim, M.S. Kim, B.T. Ahn, S.J. Ahn, J.C. Lee, K.H. Yoon, “Fabrication of CIGS solar cells with a Na-doped Mo layer on a Na-free substrate”, Thin Solid Films, 515, 2007, pp. 5876-5879.
[31] K. Herz, “Diffusion barriers for CIGS solar cells on metallic substrates”, Thin Solid Films, 431-432, 2003, pp. 392-397.
[32] 陳志安, “新式光學薄膜彩色濾光片之模擬與研製”, 國立彰化師範大學, 2009。
[33] T. Markvart and L. Castaner, “Solar cells: materials and manufacture and operation”, Oxford, Elsevier Advanced Technology, 2005.
[34] Y. Yan, K.M. Jones, J. AbuShama, M. Young, S. Asher, M.M. Al-Jassim, and R. Noufi” Microstructure of Surface Layers in Cu(In,Ga)Se2 Thin Films” Presented at the National Center for Photovoltaics and Solar Program Review Meeting Denver, 2003, pp. 80401-80403.
[35] F. Kessler, D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules”, Solar Energy, 77, 2004, pp. 685-695.
[36] W. Witte, Robert Kniese, Michael Powalla “Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents”, Thin Solid Films, 517 , 2008, pp. 867–869.
[37] J. Weszka , Ph. Daniel , A. Burian , A.M. Burian , A.T. Nguyen “Raman scattering in In2Se3 and InSe2 amorphous films”, Journal of Non-Crystalline Solids , 265, 2000, pp. 98-104.
[38] M.L. Fearheiley, “The phase relations in the Cu, In, Se system and the growth of CuInSe2 single crystals”, Solar Cells, 16, 1986, pp. 91-100.
[39] B.J. Stanbery, “Copper indium selenides and related materials for photovoltaic devices”, Critical Reviews in Solid State and Materials Sciences, 27, 2002, pp. 73-117.
[40] C. Rinco´ n, S. M. Wasim, G. Marı´n “ Raman spectra of the ordered vacancy compounds CuIn3Se5 and CuGa3Se5“ Applied physics letter, volume 73, 1998
[41] X. Fontané, V. Izquierdo-Roca,L.Calvo-Barrio.Pérez-Rodríguez, J. R. Morante, Dominik Guettler, Eicke, N. Tiwari4, ”Investigation of compositional inhomogeneities in complex polycrystalline Cu(In,Ga)Se2 layers for solar cells” Applied physics letter, volume 95, 2009.
[42] D. Wang, L. Wan, Z. Bai, and Y. Cao “Mixed phases in p-type CuInSe2 thin films detected by using micro-Raman scattering spectroscopy” Applied physics letter, volume 92, 2008.
[43] S. Roy , P. Guhaa, S.N. Kundu , H. Hanzawa , S. Chaudhuri , A.K. Pal “Characterization of Cu(In,Ga)Se2 films by Raman scattering“ Materials Chemistry and Physics, 73, 2002. pp. 24–30.
[44] J. H. Yun, K. H. Kim, M. S. Kim, B.T. Ahn, S. J. Ahn, J. C. Lee, K. H. Yoon “Fabrication of CIGS solar cells with a Na-doped Mo layer on a Na-free substrate” Thin Solid Films, 515, 2007, pp. 5876–5879.
[45] I. Roca, R. Caballero, X. Fontané, C.A. Kaufmann, J. Álvarez-García, L. Calvo-Barrio, E. Saucedo, A. Pérez-Rodríguez, J.R. Morante, H.W. Schock “ Raman scattering analysis of Cu-poor Cu(In,Ga)Se2 cells fabricated on polyimide substrates: Effect of Na content on microstructure and phase structure “ Thin Solid Films, Volume 519, Issue 21, 2011, pp. 7300-7303.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔