(3.238.7.202) 您好!臺灣時間:2021/02/26 14:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘蕙慈
論文名稱:Na摻雜方式對CIGS薄膜太陽能電池吸收層特性之影響
指導教授:林義成林義成引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:CIGS 薄膜太陽能電池吸收層鈉摻雜
外文關鍵詞:CIGS thin film solar cellabsorber layersodium dopped
相關次數:
  • 被引用被引用:0
  • 點閱點閱:675
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究為了改善CIGS吸收層薄膜的品質,提高CIGS吸收層的晶粒成長狀況,因此使用摻雜鈉於CIGS吸收層的方式,並研究其不同的摻雜方法之可用性及影響效果。實驗採用磁控濺鍍法製備CIGS 吸收層薄膜,再將薄膜做硒化退火的處理。其中,以調變玻璃基板厚度、分別噴塗NaF於沉積吸收層之前和之後、改變Mo:Na/Mo厚度比例等三種方法對CIGS 吸收層薄膜添加鈉,並觀察研究CIGS 吸收層薄膜因為鈉摻雜所造成薄膜結構與性質的影響。由研究結果發現,由SEM圖和XRD圖可知,隨著玻璃厚度的增加,其鈉擴散的量也有微量的增長趨勢,而隨著鈉擴散量的增加,其CIGS 薄膜之結構性和品質有些微的改善,但其對晶粒成長的效果似乎有限;噴塗NaF於沉積CIGS 吸收層薄膜之前的薄膜表面形貌及硒化熱處理過後的薄膜結構和品質相較於在沉積CIGS 吸收層薄膜之後作噴塗要來的好,其中以噴塗重量百分比為0.1% 之NaF溶液對CIGS 吸收層薄膜的微結構性質及晶粒成長的狀況影響最為顯著,明顯提升了吸收層薄膜成晶狀況和結構特性的品質;利用Mo:Na薄膜對吸收層摻雜鈉的最佳參數為Mo:Na薄膜膜厚為127.4nm,也就是厚度比例為18%的參數。在此參數中,CIGS 吸收層薄膜具有最低的半高寬值,以及薄膜中晶粒的成長有明顯較大的狀況,並且有助於提升薄膜之微結構特性。
In this study, in order to improve the quality of CIGS absorber layer film
and the grain growth conditions, that was doping sodium in the CIGS absorber
layer. This study researched their different doping methods and influences. The
thin-film CIGS absorber layer was prepared by magnetron sputtering, then did
annealing the thin film by selenization. Among them, using three methods that
modulating the glass substrate thickness, spraying NaF before and after
prepared CIGS absorber layer, modulating Mo:Na/Mo thickness ratio to doping
sodium in CIGS absorbing layer. In the results, the amounts of sodium
diffusion was increase with the glass thickness increases. The structure and
quality of thin film by spraying NaF before prepared CIGS absorber layer had
better than after. The parameter of 0.1% w.t. of NaF solution show the
Significantly influences of the CIGS absorber layer film microstructure and
grain grown. The best parameter in using Mo: Na films to doping sodium in
absorber layer is 127.4nm, which is the thickness ratio of 18% of the parameters.
In this result, CIGS absorber layer film which had the lowest FWHM values,
the growth of thin films were significantly larger grain, and improved the
micro-structural properties of thin films.
目次
中文摘要………………………………………………………………I
英文摘要………………………………………………………………II
謝誌………………………………………………………………III
目次………………………………………………………………IV
表次………………………………………………………………VII
圖次………………………………………………………………VIII
第一章 緒論………………………………………………………………1
1-1 研究目的……………………………………………………………… 1
1-2 研究貢獻……………………………………………………………… 2
1-3 名詞解釋……………………………………………………………… 3
第二章 理論分析與文獻回顧………………………………………………5
2-1 薄膜太陽能電池……………………………………………………… 5
2-1-1薄膜太陽能電池概論………………………………………………5
2-1-2薄膜太陽能電池基本原理………………………………………………5
2-2 CIGS 太陽能電池的材料結構與特性………………………………7
2-2-1 材料結構………………………………………………………7
2-2-2 能隙工程……………………………………………………10
2-2-3 吸收層特性……………………………………………………12
2-3 CIGS 太陽能電池元件結構…………………………………………13
2-3-1 PN 接面………………………………………………………16
2-4 CIGS 吸收層製備方法………………………………………………17
2-4-1蒸鍍法(Evaporation)…………………………………………17
2-4-2 硒化法(Selenization)…………………………………………21
2-4-3 電化學法(Electrodeposition) …………………………………22
2-4-4 印刷塗佈硒化技術(Printing) …………………………………23
2-4-5 其他的製程技術………………………………………………24
2-5 濺鍍原理……………………………………………………………24
2-5-1 濺鍍…………………………………………………………24
2-5-2 電漿濺鍍製程…………………………………………………25
2-6 摻雜鈉對CIGS 吸收層特性的影響…………………………26
第三章 研究方法………………………………………………29
3-1 實驗材料與試片準備………………………………………………29
3-2 實驗流程……………………………………………………………32
3-4 以調變玻璃基板厚度之方法摻雜鈉…………………………42
3-5 以噴塗NaF之方法摻雜鈉……………………………………42
3-6 以Mo:Na靶材摻雜鈉………………………………………44
3-7 薄膜特性分析………………………………………………………45
3-7-1 薄膜沉積率的量測……………………………………………45
3-7-2 薄膜表面及橫截面影像量測…………………………………46
3-7-3 薄膜表面成分分析……………………………………………47
3-7-4 薄膜化學性質分析……………………………………………48
3-7-5 薄膜微結構分析………………………………………………49
第四章 結果與討論………………………………………………50
4-1 玻璃基板厚度對吸收層摻雜鈉之影響……………………………50
4-2噴塗NaF對吸收層摻雜鈉的影響…………………………………58
4-3 用Mo:Na靶材對吸收層摻雜鈉的影響…………………………68
第五章 結論與未來研究………………………………………………78
5-1 結論…………………………………………………………………78
5-2 未來研究……………………………………………………………80
參考文獻………………………………………………81

表次
表3-1 靶材材料細節………………………………………………29
表3-2 CIGS成分表………………………………………………30
表3-3 Mo:Na靶材成分重量比………………………………………………30
表3-4 AZO靶材成分重量比………………………………………………30
表3-5 蘇打玻璃成份比例………………………………………………32

圖次
圖2-1 太陽能電池基本原理………………………………………………6
圖2-2 (a)閃鋅礦結構 (b)黃銅礦結構……………………………………………8
圖2-3 Cu2Se–In2Se3 二元相圖………………………………………………9
圖2-4 CuInSe2 之相類似的二元相圖是延著藉由不同的熱處理溫度分析和微結構相圖分析所建立的 In2Se3 和Cu2Se 二元混合物曲線…………………………10
圖2-5 Cu(In,Ga,Al)(S,Se)合金系統能隙值與晶格常數相對應圖…………12
圖2-6 薄膜太陽電池結構示意圖………………………………………………13
圖2-7 模擬CIGS 太陽能電池能帶圖………………………………………………17
圖2-8 蒸鍍法沉積示意圖………………………………………………19
圖2-9 三階段蒸鍍法製程過程………………………………………………20
圖2-10 三階段蒸鍍法製程流程圖………………………………………………21
圖2-11 電化學沉積法示意圖………………………………………………23
圖2-12 在不同膜層位置摻雜納之製程示意圖………………………………………27
圖2-13 不同膜層位置摻雜納對吸收層晶粒成長之影響……………………………27
圖2-14 於鉬電極下層摻雜納對CIGS太陽能電池元件特性的影響………………28
圖3-1 靶材和粉末實物的照片………………………………………………31
圖3-2 實驗流程圖………………………………………………34
圖3-3 基板準備與前處理………………………………………………35
圖3-4 複合式薄膜濺鍍系統示意圖 ………………………………………………37
圖3-5 雙電源薄膜濺鍍系統示意圖 ………………………………………………38
圖3-6 雙層鉬電極………………………………………………39
圖3-7 吸收層薄膜示意圖………………………………………………40
圖3-8 硒化退火系統示意圖………………………………………………41
圖3-9 噴塗NaF摻雜鈉之實驗流程:(a) 噴塗NaF 於沉積吸收層之前; (b) 噴塗NaF於沉積吸收層之後………………………………………………43
圖3-10 噴塗NaF溶液示意圖………………………………………………43
圖3-11 以不同厚度的Mo:Na薄膜摻雜鈉之示意圖………………………………44
圖3-12 薄膜測厚儀………………………………………………45
圖3-13 熱場發射掃描式顯微鏡………………………………………………46
圖3-14 X 光能量分散光譜………………………………………………47
圖3-15 二次離子質譜儀………………………………………………48
圖3-16 X-ray 繞射儀………………………………………………49
圖4-1 濺鍍功率125W、基板溫度373K,熱處理溫度798K,持溫20分鐘條件下之不同玻璃厚度基板的吸收層截面圖………………………………………………51
圖4-2 熱處理溫度798K,持溫20分鐘條件下玻璃基板的鈉擴散於鉬電極之上之成分比例比較圖………………………………………………53
圖4-3 熱處理溫度798K,持溫20分鐘的條件下,不同玻璃厚度基板的鉬表面鈉分佈圖………………………………………………54
圖4-4 濺鍍功率125W、基板溫度373K,熱處理溫度798K,持溫20分鐘條件下玻璃基板厚度分別為1mm、2mm、3mm對CIGS吸收層成分比例之影響……………55
圖4-5 不同厚度玻璃基板的CIGS吸收層之XRD圖………………………………57
圖4-6 SLG/Mo/NaF/CIGS結構下噴塗以不同NaF 比例,再經過熱處理之後的CIGS薄膜表面及橫截面SEM圖………………………………………………59
圖4-7 SLG/Mo/CIGS/NaF結構噴塗以不同NaF 比例,再經過熱處理之後的薄膜表面及橫截面SEM圖………………………………………………60
圖4-8 在(a)SLG/Mo/NaF/CIGS和(b) SLG/Mo/CIGS/NaF結構下噴塗NaF 摻雜鈉對吸收層成分之影響………………………………………………62
圖4-9 在(a)SLG/Mo/NaF/CIGS和(b) SLG/Mo/CIGS/NaF結構下噴塗NaF 摻雜鈉對吸收層Ga/(Ga+In)和Cu/(Ga+In) 之比例影響圖………………………63
圖4-10 SLG/Mo/NaF/CIGS結構下噴塗不同重量百分比NaF之XRD圖 …66
圖4-11 SLG/Mo/CIGS/NaF結構下噴塗不同重量百分比NaF之XRD圖 …………67
圖4-12 調變Mo:Na 薄膜膜厚以摻雜納對吸收層薄膜的表面形貌和薄膜橫截面結構之影響………………………………………………70
圖4-13 改變Mo:Na 薄膜厚度對CIGS吸收層成分比例影響圖…………………72
圖4-14 不同膜厚比例的Mo:Na/Mo (a) 0% (b) 0.9% (c) 18% (d) 34% (e) 41% (f) 54.5% 表面鈉分佈圖………………………………………………73
圖4-15 改變Mo:Na 薄膜厚度對CIGS吸收層Ga/(Ga+In)和Cu/(Ga+In) 之比例影響圖………………………………………………74
圖4-16 不同膜厚比例的Mo:Na/Mo (a) 0% (b) 0.9% (c) 18% (d) 34% (e) 41% (f) 54.5% 對CIGS吸收層微結構影響之XRD圖……………………77










參考文獻

[1]J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Mority, A. Shah, “Potential of amorphous and microcrystalline silicon solar cells”, Thin Solid Films, 2004, pp. 518-524.
[2]X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells”, Solar Energy, 77, 2004, pp. 803-814.
[3]Udai P. Singh and Surya P. Patra, “Progress in Polycrystalline Thin-Film Cu(In,Ga)Se2 Solar Cells”, Hindawi Publishing Corporation International Journal of Photoenergy, 2010.
[4]S.O. Kasap, “Optoelectronics and photonics: principles and practices”, Prentice Hall, Upper Saddle River, 2001.
[5]T. Markvart and L. Castaner, “Solar cells: materials and manufacture and operation”, Oxford, Elsevier Advanced Technology, 2005.
[6]B.J. Stanbery, “Copper indium selenides and related materials for photovoltaic devices”, Critical Reviews in Solid State and Materials Sciences, 27, 2002, pp. 73-117.
[7]M. Burgelman and A. Niemegeers, “Calculation of CIS and CdTe module efficiencies”, Solar Energy Materials & Solar Cells, 51, 1998, pp. 129-143.
[8]M.A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, and R. Noufi, “High efficiency graded bandgap thin-film polycrystalline Cu(In,Ga)Se2-based solar cells”, Solar Energy Materials & Solar Cells, 41-42, 1996, pp. 231-246.
[9]A.M. Gabor, J.R. Tuttle, M.H. Bode, A. Franz, A.L. Tennant, M.A. Contreras, R. Noufi, D.G. Jensen, and A.M. Hermann, “Band-gap engineering in Cu(In,Ga)Se2 thin films grown from (In,Ga)2Se3 precursors”, Solar Energy Materials & Solar Cells, 41-42, 1996, pp. 247-260.
[10]B.J. Stanbery, “Copper indium selenides and related materials for photovoltaic devices”, Critical Reviews in Solid State and Materials Sciences, 27, 2002, pp. 73-117.
[11]T. Nakada and A. Kunioka, “Sequential sputtering/selenization technique for the growth of CuInSe2 thin films”, Japanese Journal of Applied Physics, 37, 1998, pp. L1065-L1067.
[12]黃惠良, “太陽能電池”, 五南圖書出版公司, 2009。
[13]Y. Hamakawa, “Thin-film solar cells: next generation photovoltaics and its applications“, Springer-Verlag Berlin Heidelberg, 2004, pp 244.
[14]S. Ishizake, A. Yamada, P. Fons, S. Niki, “Flexible Cu(In,Ga)Se2 solar cells fabricated using alkali-silicate glass thin layers as an alkali source material”,Journal of Renewable & Sustainable Energy, 1,2009, pp. 1-8 .
[15]K. Chopra, P. Paulson, V. Dutta, “Thin film solar cells: an overview”, Renewable Energy, 8, 1996, pp. 375-379.
[16]M. Ruckh, “Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films”, First World Conference on Photovoltaic Energy Conversion, Hawaii, USA, 1994, pp. 156-159.
[17]W. Sharfarman, J. Phillips, “Direct current-voltage measurements of the Mo/CuInSe2 contact on operating solar cells”, Proceedings of the 25th IEEE Photovoltaic Specialists Conference, Washington DC, 1996, pp. 917-920.
[18]S.H. Wei and A. Zunger, “Band offsets at the CdS/CuInSe2 heterojunction”, Applied Physics Letters, 63, 1993, pp. 2549-2551.
[19]A. Kanevce, “Anticipated performance of Cu(In,Ga)Se2 solar cells in the thin-film limit”, Colorado State University, 2007, pp. 11-14.
[20]W.E. Devaney, W.S. Chen, J.M. Stewart, and R.A. Mickelsen, “Structure and properties of high efficiency ZnO/CdZnS/CuInS/CuInGaSe2 solar cells”, IEEE Transaction on Electron Devices, 37, 1990, pp. 428-433.
[21]A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, and A.M. Hermann, “High-efficiency CuInxGa1-xSe2 solar cells made from (Inx,Ga1-x)2Se3 precursor films”, Applied Physics Letters, 65, 1994, pp. 198-200.
[22]J.R. Tuttle, M.A. Contreras, T.J. Gillespie, K.R. Ramanathan, A.L. Ennant, J. Keane, A.M. Gabor, and R. Noufi, “Accelerated publication 17.1% efficient Cu(In,Ga)Se2-based thin-film solar cell”, Progress in Photovoltaics, 3, 1995, pp. 235-238.
[23]J.J.M. Binsma and H.A.V.D. Linden, “Preparation of thin CuInS2 films via a two-stage process”, Thin Solid Films, 97, 1982, pp. 237-243.
[24]T.L. Chu, S.C. Chu, S.C. Lin, and J. Yue, “Large grain copper indium diselenide films”, Journal of Electrochemical society, 131, 1984, pp. 2182-2185.
[25]V.K. Kapur, B.M. Basol, and E.S. Tseng, “Low-cost methods for the production of semiconductor films for CuInSe2/Cds solar cell”, Solar Cells, 21, 1987, pp. 65-72.
[26]V. Probst, F. Karg, J. Rimmasch, W. Riedl, W. Stetter, H. Harms, and O. Eibl, “Advanced stacked elemental layer process for Cu(InGa)Se2 thin film photovoltaic devices”, Materials Research Society Symposium -Proceedings, 426, 1996, pp. 165-176.
[27]F.J. Pern, R. Noufi, A. Mason, and A. Franz, “Characterizations of electrodeposited CuInSe2 thin films: structure, deposition and formation mechanisms”, Thin Solid Films, 202, 1991, pp. 299-314.
[28]C. Eberspacher, K.L. Paulsm, and C.V. Fredric, “Improved processes for forming CuInSe2 films”, Procedings 2nd World Conference on Photovoltaic Solar Energy Conversion, 1998, pp. 303-309.
[29]C. Eberspacher, K. Pauls, and J. Serra, “Non-vacuum processing of CIGS solar cells”, Proceding 29th IEEE Photovoltaic Specialists Conference, 2002, pp. 684-687.
[30]P.N. Gallon, G. Orsal, M.C. Artaud, and S. Duchemin, “Studies of CuInSe2 and CuGaSe2 thin films grown by MOCVD from three organometallic sources”, Procedings 2nd World Conference on Photovoltaic Solar Energy Conversion, 1998, pp. 515-518.
[31]A. Romeo, M. Terheggen, D. Abou-Ras, D.L. Bätzner, F.J. Haug, M. Kälin, D. Rudmann, and A.N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells”, Progress in Photovoltaics: Research and Applications, 2004, pp. 93-111.
[32]T. Negami, T. Satoh, Y. Hashimoto, S. Nishiwaki, S.I. Shimakawa, and S. Hayashi, “Large-area CIGS absorbers prepared by physical vapor deposition”, Solar Energy Materials & Solar Cells, 67, 2001, pp. 1-9.
[33]T. Markvart and L. Castaner, “Solar cells: materials, manufacture and operation”, Elsevier Advanced Technology, 2005.
[34]I.H. Choi and P.Y. Yu, “Preparation of CuInSe2/CuGaSe2 two layers absorber film by metal–organic chemical vapor deposition”, Current Applied Physics, 9, 2009, pp. 151-154.
[35]R. Caballero, C.A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, H.W. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates”, Thin Solid Films, 2009, pp. 2187-2190
[36]M. S. Young, H. S. Dong, H. K. Ji, T. A. Byung, “Effect of Na doping using Na2S on the structure and photovoltaic properties of CIGS solar cells”, Current Applied Physics, 2011, S59-S64.
[37]H. Y. Jae, H. K. Ki, S. K. Min, T. A. Byung, J. A. Se, C. L. Jeong, H. Y. Kyung, “Fabrication of CIGS solar cells with a Na-doped Mo layer on a Na-free substrate”, Thin Solid Films, 2007, pp. 5876- 5879
[38]http://en.wikipedia.org/wiki/Soda-lime_glass

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔