跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 23:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙晏泰
研究生(外文):Yen-Tai Chao
論文名稱:以CBD沉積法製備Cu(In,Ga)Se2太陽電池之硫化鋅緩衝層特性研究
論文名稱(外文):Stydy of ZnS thin films by Chemical Bath Deposition for Cu(In,Ga)Se2 solar cells
指導教授:林義成林義成引用關係
指導教授(外文):Yi-Cheng Lin
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:97
中文關鍵詞:緩衝層化學浴沉積法硫化鋅薄膜
外文關鍵詞:Buffer layerChemical bath deposition methodZnS thin film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以化學水浴沉積法製備ZnS緩衝層薄膜,應用於CIGS太陽電池上。研究中採用封閉式CBD製程方法改善以開放式製程中易受到濕度影響造成薄膜披覆不均,並比較CdS及ZnS對CIGS太陽電池效率影響。研究中利用掃描式電子顯微鏡分析其ZnS表面形貌,搭配XPS測量成份影響,透過X光繞射儀進行薄膜結晶性分析,並藉由UV量測其光學穿透度特性。在研究結果得知,以密閉式化學水浴沉積法在不同大氣溼度下所製備出ZnS薄膜,其薄膜並不會受到環境溼度變化而有所影響,從XPS量測其薄膜在不同濕度下其O所佔比率約26 %,而S/Zn比約為0.82,表面粗糙度約4.5 nm,而其結構為閃鋅礦結構。若以密閉式化學水浴沉積法製程中以硫酸鋅( ZnSO4 ) 0.1M、硫脲(SC(NH2)2) 0.6 M、聯氨(N2H4) 10cc、溶液溫度為80℃及pH為9.7時沉積25 min可製備出良好披覆性之ZnS薄膜,其平均光學穿透度在可見光( 380~800nm )可達約77%,光學能隙約3.8eV,而將其ZnS薄膜參數應用於CIGS太陽電池緩衝層,其可得到0.56 % 之光電轉換效率。
In this research were prepared ZnS buffer layer thin films by
chemical bath deposition, and used in CIGS solar cells. The research used
Hermetic CBD process to improve the open process is vulnerable to
humidity caused by the uneven films coated, and compare the impact of
CdS and ZnS on the CIGS solar cell efficiency. In this research using
scanning electron microscopy analysis of ZnS surface morphology,
analysis component of film by XPS, films structural analysis by X-ray
diffraction, and films optical transmittances by spectroscopy (UV-VIS).
The results of the research, Hermetic CBD process under different
atmospheric humidity prepared ZnS film, the films is not easy to be
affected by environmental humidity changes, films at different humidities
O measured from the XPS volume percentage of about 26%, while the
S/Zn ratio of about 0.82, the surface roughness of about 4.5 nm, and films
structure for the zinc blende structure. The Hermetic CBD process zinc
sulfate ( ZnSO4 ) 0.1M. thiourea (SC(NH2)2) 0.6 M. hydrazine (N2H4)
10cc. the solution temperature at 80℃ and pH 9.7 deposited at 25 min
can prepared better ZnS films, the average optical transmittance in the
visible (380 to 800nm) approximately 77%, the optical bandgap of 3.8eV,
and used in CIGS solar cells buffer layer, available the photoelectric
conversion efficiency of 0.56%.
目次

中文摘要 I
英文摘要 II
謝誌 III
目次 IV
表次 VI
圖次 VII
第一章 緒 論 1
1-1 研究目的 1
1-2 名詞解釋 2
第二章 理論分析與文獻回顧 3
2-1 太陽電池基本原理 3
2-2 CIGS太陽電池 7
2-3 緩衝層製備方法 21
2-4 化學水浴沉積法製備ZnS薄膜 25
2-5 ZnS結構與性質 28
第三章 研究方法 30
3-1 實驗流程 30
3-2 實驗材料與試片準備 32
3-3 實驗參數及步驟 34
3-4 薄膜分析 38
3-4-1 薄膜表面及截面形貌量測 38
3-4-2 薄膜表面粗糙度量測 39
3-4-3 薄膜沉積率量測 40
3-4-4 薄膜結構分析 42
3-4-5 薄膜成分分析 43
3-4-6 薄膜光學性質分析 44
第四章 結果與討論 45
4-1 環境溼度對不同CBD製程影響 45
4-1-1 形貌分析 45
4-1-2 成分分析 52
4-1-3 結構分析 57
4-1-4 光學性質分析 59
4-2 參數設計 61
4-2-1 pH值控制 61
4-2-2 硫酸鋅濃度調變 65
4-2-3 硫脲濃度調變 68
4-2-4 錯合物添加 71
4-3 不同氣體對CBD製程之影響 76
4-4 薄膜披覆於CIGS元件 81
第五章 結論與未來研究 86
5-1 結論 86
5-2 未來研究 87
參考文獻 88



表次
表2-1 CIGS薄膜沉積於不同基板文獻回顧 9
表2-2 Mo電極文獻回顧 10
表2-3 吸收層晶格常數及能係大小 12
表2-4 不同製程方法製備CIGS吸收層文獻回顧 13
表2-5 不同材料及方法製備緩衝層之元件效率 17
表2-6 緩衝層不同材料晶格常數及能係大小 18
表2-7 緩衝層文獻回顧 18
表2-8 CIGS ZnO/TCO文獻回顧 19
表2-9 以CBD製備ZnS薄膜文獻回顧 25
表3-1 蘇打玻璃成分 32
表3-2 參數設定 37
表4-1 不同製程在不同濕度下之O及S/Zn之比值 53
表4-2 製程中通入不同氣體之O及S/Zn比值 77
表4-3 ZnS及CdS沉積於CIGS元件參數 82
表4-4 ZnS薄膜披覆於CIGS太陽電池之效率量測 82



圖 次
圖2-1 太陽能電池的工作原理 4
圖2-2 電壓與電流之關係圖 6
圖2-3 CIGS太陽電池結構圖 7
圖2-4 材料光吸收係數 12
圖2-5 CIS/CdS 能係不連續結構 15
圖2-6 各種製作薄膜太陽電池緩衝層之製作方法 16
圖2-7 ZnS不同製程之轉換效率 21
圖2-8 ZnS不同晶態(a)纖鋅礦(b)閃鋅礦 29
圖3-1 實驗流程圖 31
圖3-2 實驗藥品 33
圖3-3 化學水浴沉積法示意圖 35
圖3-4 玻璃基板清洗流程 36
圖3-5 熱場發射掃描式電子顯微鏡 38
圖3-6 表面粗糙度儀 39
圖3-7 薄膜測厚儀 40
圖3-8 橢圓偏光儀 41
圖3-9 X-ray繞射儀 42
圖3-10 化學分析電子能譜儀 43
圖3-11 紫外光光譜分析儀 44
圖4-1 開放式CBD製程不同環境溼度下ZnS薄膜表面形貌分析,平均溼(a)60%(b)70%(c)80% 47
圖4-2 密閉式CBD製程不同環境溼度下ZnS薄膜表面形貌分析,平均溼度(a)60% (b)70%(c)80% 48
圖4-3 開放式CBD製程不同環境溼度下ZnS薄膜粗糙度,平均溼度(a)60% (b)70%(c)80% 50
圖4-4 密閉式CBD製程不同環境溼度下ZnS薄膜粗糙度,平均溼度(a)60% (b)70%(c)80% 51
圖4-5 CBD製程不同環境溼度下ZnS薄膜之全譜線圖(a)開放式(b)密閉式 54
圖4-6 CBD製程不同環境溼度下ZnS薄膜之O、Zn及S含量(a)開放式(b)密閉式 55
圖4-7 CBD製程不同環境溼度下ZnS薄膜Zn2p3細掃分析(a)開方式(b)密閉式 56
圖4-8 CBD製程不同溼度下ZnS薄膜之繞射圖(a)開放式(b)密閉式 58
圖4-9 CBD製程不同環境溼度下ZnS薄膜光學穿透光譜(a)開放式(b)密閉式 60
圖4-10 密閉式CBD製程中不同pH值之薄膜表面形貌分析(a)pH9.3(b)pH9.5 (c)pH9.7(d)pH9.9 63
圖4-11 密閉式CBD製程中不同pH值之薄膜光學穿透光譜 64
圖4-12 密閉式CBD製程中不同ZnSO4濃度之薄膜表面形貌分析(a)0.067M (b)0.1M(c)0.2M 66
圖4-13 密閉式CBD製程中不同ZnSO4濃度之薄膜光學穿透光譜 67
圖4-14 密閉式CBD製程中不同SC(NH2)2濃度之薄膜表面形貌分析(a)0.3M(b)0.6M(c)0.9M 69
圖4-15 密閉式CBD製程中不同SC(NH2)2濃度之薄膜光學穿透光譜 70
圖4-16 密閉式CBD製程中不同N2H4添加量之薄膜表面形貌分析(a)0cc(b)5 cc(c)10cc(d)15cc 72
圖4-17 密閉式CBD製程不同N2H4濃度之薄膜光學穿透光譜 73
圖4-18 最佳薄膜能隙值 75
圖4-19 製程中通入氣體之薄膜表面形貌分析(a)Without gas(b)Ar (c)Ar+H2(>2.93%) 78
圖4-20 CBD製程中通入不同氣體之ZnS薄膜Zn2p3細掃分析 79
圖4-21 製程中通入氣體之薄膜光學穿透光譜 80
圖4-22 CdS及ZnS薄膜沉積於CIGS基板前後之表面形貌分析(a)未披覆(b)ZnS披 覆於CIGS基板(c)CdS披覆於CIGS基板 83
圖4-23 CdS及ZnS薄膜沉積於CIGS基板前後之剖面圖(a)未披覆(b)ZnS披覆於CIGS基板(c)CdS披覆於CIGS基板 84
圖4-24 ZnS薄膜沉積於CIGS太陽電池I - V曲線 85
[1] M. Contreras, H. Wiesner, D. Niles, K. Ramanathan, R. Maston, J. Tuttle, J. Keane, R. Noufi, “Defect chalcopyrite Cu(In1-xGax)3Se5 materials and high-Ga-content Cu(In,Ga)Se2-based solar cells”, Proceedings of the 25th IEEE Photovoltaic Specialists Conference, Washington DC, pp. 809-812 (1996).
[2] S. Kasap, “Optoelectronics and photonics: principles and practices”, Prentice Hall, Upper Saddle River, (2001).
[3] Y. Hamakawa, “Thin-film solar cells: next generation photovoltaics and it’s applications”, Springer-Verlag Berlin Heidelberg, pp. 244 (2004).
[4] J. S. Ward, K. Ramanathan, F. S. Hasoon,T. J. Coutts, J. Keane, M. A. Contreras, T. Moriarty, R. Noufi, “A 21.5 % efficient Cu(In,Ga) Se2 thin film concentrator solar cell”, Progress in Photovoltaics :Research and Applications , 10, pp. 41-46 (2002).
[5] ZhangL, J. iang FD, Feng J Y , “Formation of Cu InSe and Cu( In,Ga) Se2 films by electrodeposition and vacuum annealing treatment”, Solar Energy Materials &; Solar Cells, 80, pp. 483-490 (2003).
[6] A. Rockett, R. W. Birkmire, “CuInSe2 for photovoltaic applications”, J Appl Phys , 70, pp. 81 (1991).
[7] M. E Calixto, P. J Sebastian, R. N Bhattacharya, Rommel Noufi, “Compositional and op toelectronic p roperties of CIS and CIGS thin films formed by electrodeposition”, Solar Energy Materials &; Solar Cells, 59, pp. 75-84 (1999).
[8] A. Kampmann, V. Sittinger, J, Rechid, R. Reineke- Koch, “Large area electrodeposition of Cu (In,Ga) Se2”, ThinSolid films, 361 -362, pp 309-313 (2000).
[9] S. Ishizake, A. Yamada, P. Fons, S. Niki, “Flexible Cu(In,Ga)Se2 solar cells fabricated using alkali-silicate glass thin layers as an alkali source material”, Journal of Renewable &; Sustainable Energy, 1, pp. 1-8 (2009).
[10] R. Kimura, T. Nakada, P. Fons, “Photoluminescence properties of sodium incorporation in CuInSe2 and CuIn3Se5 thin films”, Solar Energy Materials &; Solar Cells, 67, pp. 289-295 (2001).
[11] D. Braunger, “Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films”, Thin Solid Films, 361-362, pp. 161-166 (2000).
[12] K. Chopra, P. Paulson, V. Dutta, “Thin film solar cells: an overview”, Renewable Energy, 8, pp. 375-379 (1996).
[13] M. Ruckh, “Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films”, First World Conference on Photovoltaic Energy Conversion, Hawaii, USA, pp. 156-159 (1994).
[14] Jae Ho Yun, Ki Hwan Kim, Min Sik Kim, Byung Tae Ahn, Se Jin Ahn, Jeong Chul Lee, Kyung Hoon Yoon, “Fabrication of CIGS solar cells with a Na-doped Mo layer on a Na-free substrate”, Thin Solid Films, 517,pp. 5876-5879 (2007).
[15] K. Herz, F. Kessler, R. Wachter, M. Powalla, J. Schneider, A. Schulz, U. Schumacher, “Dielectric barriers for flexible CIGS solar modules”, Thin Solid Films, 403-404, pp. 384-389 (2002).
[16] K. Herz, “Diffusion barriers for CIGS solar cells on metallic substrates”, Thin Solid Films, 431-432, pp. 392-397 (2003).
[17] Takuya Satoh, Yasuhiro Hashimoto, Shin-ichi Shimakawa, Shigeo Hayashi, Takayuki Negami, “Cu(In,Ga)Se2 solar cells on stainless steel substrates covered with insulating layers”, Solar Energy Materials &; Solar Cells, 75,pp. 65-71 (2003).
[18] W. Sharfarman, J. Phillips, “Direct current-voltage measurements of the Mo/CuInSe2 contact on operating solar cells”, Proceedings of the 25th IEEE Photovoltaic Specialists Conference, Washington DC, pp. 917-920 (1996).
[19] T. Vink, M. Somers, J. Daams, A. Dirks, “Stress strain and microstructure of sputter deposited Mo thin films”, Journal of Applied Physics, 70, pp. 4301-4308 (1991).
[20] D. Abou-Rasa, G. Kostorza, D. Bremaudb, M. Kalin, F.V. Kurdesau, A.N. Tiwari, M. Dobelic, “Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells”, Thin Solid Films, 480-481, pp. 433 (2005).
[21] R. Chakrabarti, A.B. Maity, R. Pal, D. Bhattacharyya, S. Chaudhuri, A. Pal, “Estimation of stress in polycrystalline CuInSe2 films deposited on Mo-coated glass substrates”, Physical Status Solid, 160, pp. 67-76 (1997).
[22] K. Orgassa, “Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells”, Thin Solid Films, 431-432, pp. 387-391 (2003).
[23] L. Assmann, J.C. Berne`de, A. Drici, C. Amory, E. Halgand, M. Morsli, “Study of the Mo thin films and Mo/CIGS interface properties”, Applied Surface Science, 246, pp. 159-166 (2005).
[24] Naoki Kohara,, Shiro Nishiwaki, Yasuhiro Hashimoto, Takayuki Negami, Takahiro Wada, “Electrical properties of the Cu(In,Ga)Se2/MoSe2/Mo structure”, Solar Energy Materials &; Solar Cells, 67, pp. 209-215 (2001).
[25] P.P. Hankare, A. A. Patil, P. A. Chate, K. M. Garadkar, D. J. Sathe, A.H. Manilshete, I. S. Mulla, “Characterization of MoSe2 thin film deposited at room temperature from solution phase”, Journal of Crystal Growth, 311, pp. 15-19 (2008).
[26] Tom Markvart, Luis Castaner, “Solar Cells: Materials, Manufacture and Operation”, Elsevier Science LTD, Oxford, p. 332 (2005).
[27] H.J. Moller, “Semiconductor for solar cell”, Artech House, (1993).
[28] S. Bandyopadhyaya, S. Roy, S. Chaudhuri, A. Pal, “CuIn(Sx,Se1-x)2 films prepared by graphite box annealing of In/Cu stacked elemental layers”, 62, pp. 61-73 (2001).
[29] M. Purwins, R. Enderle, M. Schmid, P. Berwian, G. Muller, F. Hergert, S. Jost, R. Hock, “Phase relations in the ternary Cu-Ga-In system”, Thin Solid Films, 515,pp. 5895-5898 (2007).
[30] G. Chen, J. Yang, Y. Chan, L. Yang, W. Huang, “Another route to fabricate single-phase chalcogenides by post-selenization of Cu-In-Ga precursors sputter deposited from a single ternary target”, Solar Energy Materials &; Solar Cells, 93, pp. 1351-1355 (2009).
[31] K. H. Kim, B. T. Ahn, S. H. Kwon, J. H. Yun, K. H. Yoon, “Characterization of Cu(In,Ga)3Se5 Thin Film for Top Cell in CIGS Tandem Solar Cells”, Solid State Phenomena, 124-126, pp. 959-962 (2007).
[32] S. H. Kwon, D. Y. Lee and B. T. Ahn, “Characterization of Cu(In1-xGax)Se2 Films Prepared by Three-Stage Coevaporation and Their Application to CIGS Solar Cells for a 14.48 % Effciency ”, Journal of the Korean Physical Society, 39, pp. 655-660 (2001).
[33] T. Yamaguchi, M. Naka, S. Niiyama, T. Imanishi, “ Characterization of Cu(In,Ga)Se2 thin films prepared by evaporation from ternary compounds”, Journal of Physics and Chemistry of Solids, 66,pp. 2000-2003 (2005).
[34] W. Eisele, A. Ennaoul, P.S. Bischoff, “New cadmium-free buffer layer as heterojunction partners on Cu(In,Ga)(S,Se)2 thin film solar cells”, IEEE Xplore, Restrictions Apply, pp. 692-695 (2000).
[35] Adrian Chirilă, Stephan Buecheler, Fabian Pianezzi, Patrick Bloesch, Christina Gretener, Alexander R. Uhl, Carolin Fella, Lukas Kranz, Julian Perrenoud, Sieghard Seyrling, Rajneesh Verma, Shiro Nishiwaki, Yaroslav E. Romanyuk, Gerhard Bilger, Ayodhya N. Tiwari, “Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films”, Nature Materials, 10, pp. 857-861 (2011).
[36] C. Huang, S. Sheng, L. Rieth, A. Halani, M. Fisher, J. Song, T. Anderson, P. Holloway, “A comparative study of chemical-bath-deposited CdS, (Cd,Zn)S, ZnS, and In(OH)xSy buffer layers for CIS-based solar cells”, IEEE Photovoltaic Specialist Conference, pp. 696-699 (2000).
[37] D. Hariskos, S. Spiering, M. Powalla, “Buffer layers in Cu(In,Ga)Se2 solar cells and modules”, Thin Solid Films, 480-481, pp. 99-109 (2005).
[38] M.A. Contreras, T. Nakada, M. Hongo, A.O. Pudov, J.R. Sites, “ZnO/ZnS(O,OH)/Cu(In,Ga)Se2/Mo solar cell with 18.6% efficiency”, 3rd World Conference of Photovoltaic Energy Conversion, pp. 570-573 (2003).
[39] Poulomi Roy, Jyoti R. Ota, Suneel Kumar Srivastava, “Crystalline ZnS thin films by chemical bath deposition method and its characterization”, Thin Solid Films, 515, pp. 1912-1917 (2006).
[40] Seung Wook Shin , So Ra Kang , JaeHo Yun, A.V. Moholkar, Jong-HaMoon , Jeong YongLee , Jin Hyeok Kim, “Effect of different annealing conditions on the properties of chemically deposited ZnS thin films on ITO coated glass substrates”, Solar Energy Materials &; Solar Cells, 95, pp. 856-863 (2011).
[41] F. Gode, C. Gumus, M. Zor, “Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method”, Journal of Crystal Growth, 299, pp. 136-141 (2007).
[42] H.Hori, K.Tanaka, Y.Oda, T.Minemoto, H.Takakura, “Metastability of Zn1-xMgxO/Cu(In,Ga)Se2 solar cells with different conduction band offset values”, Journal of Crystal Growth, 311, pp. 727-730 (2009).
[43] J. Marlein , K. Decock, M. Burgelman, “Analysis of electrical properties of CIGSSe and Cd-free buffer CIGSSe solar cells”, Thin Solid Films, 517, pp. 2353-2356 (2009).
[44] L. Shao, K.-H. Chang, H.-L. Hwang, “ Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications”, Applied Surface Science, 212-213, pp. 305-310 (2003).
[45] A.Grimm, R. Klenk, J. Klaer, I. Lauermann, A. Meeder, S. Voigt, A. Neisser, “CuInS2-based thin film solar cells with sputtered (Zn,Mg)O buffer”, Thin Solid Films, 518, pp.1157-1159 (2009).
[46] U. Ozgur, Y. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S. Cho, H. Morkoc, “A comprehensive review of ZnO materials and device”, Journal of Applied Physics, 98, pp. 1-103 (2005).
[47] C. Platzer-Bjorkman, J. Lu, J. Kessler, L. Stolt, “Interface study of CuInSe2 ZnO and Cu(In,Ga)Se2 ZnO devices using ALD ZnO buffer layers”, Thin Solid Films, 431-432, pp. 321-325 (2003).
[48] Katsumi Kushiya, Baosheng Sang, Daisuke Okumura, Osamu Yamase, “Application of Stacked ZnO Films as a Window Layer to Cu(InGa)Se2-Based Thin-Film Modules”, Japance Journal of Applied Physics, 38, pp.3997-4001 (1999).
[49] G. Gordillo ,C.Calderon, “Properties of ZnO thin films prepared by reactive evaporation”, Solar Energy Materials &; Solar Cells, 69, pp.251-260 (2001).
[50] K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, S. Niki, “ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications”, Thin Solid Films, 431-432, pp. 369-372 (2003).
[51] Kannan Ramanathan, Miguel A. Contreras, Craig L. Perkins, Sally Asher, Falah S. Hasoon, James Keane, David Young, Manuel Romero, Wyatt Metzger,Rommel Noufi, James Ward, Anna Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells”, 11, pp. 225–230 (2003).
[52] A. Strohm, L. Eisenmann, R.K. Gebhardt, A. Harding, T. Schlotzer, D. Abou-Ras, H.W. Schock, “ ZnO/InxSy/Cu(In,Ga)Se2 solar cells fabricated by coherent heterojunction formation”, Thin Solid Films, 480–481,pp. 162-167 (2005).
[53] S. Spieringa, D. Hariskosa, M. Powallaa, N. Naghavib, D. Lincotb, “CD-free Cu(In,Ga)Se2 thin-film solar modules with In2S3 buffer layer by ALCVD”, Thin Solid Films, 431-432, pp. 359-363 (2003).
[54] N. Naghavi, S. Spiering, M. Powalla, B. Cavana, D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD) ”, Progress in Photovoltaics:Research and Applications, 11, pp. 437–443 (2003).
[55] R.S. Manc, C.D. Lokhande, “Review Chemical Deposition Method for Metal Chalcogenide Thin Films”, Materials Chemistry and Physics, 65, pp. 1-31 (2000).
[56] P. O. Brien, J. McAleese, “Developing an Understanding of The Processes Controlling Thr Chemical Bath Deposition of ZnS and CdS”, Journal of Materials Chemistry, 8, pp. 2309-2314 (1998).
[57] Y. Zhang, X.Y. Dang, J. Jin, T. Yu, B.Z. Li, Q. He, F.Y. Li, Y. Sun, “ZnS thin film deposited with chemical bath deposition process directed by different stirring speeds”,Applied Surface Science, 256, pp. 6871-6875 (2010).
[58] Q. Liu, M. Guobinga, A. Jianping, Applied Surface Science, “Chemical bath-deposited ZnS thin films: Preparation and characterization”, 254, pp. 5711-5714 (2008).
[59] Z. Limei, X. Yuzhi, L. Jianfeng, “Study on ZnS thin films prepared by chemical bath deposition”,Journal of Environmental Sciences Supplement, pp. S76-S79 (2009).
[60] S. W. Shin, S. R. Kang, J. H. Yun, A.V. Moholkar, j. Moon,J. Y. Lee, j. H. Kim, “Effect of pH on the characteristics of nanocrystalline ZnS thin films prepared by CBD method in acidic medium”,Current Applied Physics, 10, pp. S473-S477 (2010).
[61] A. Goudarzi, G. M. Aval, R. Sahraei, H. Ahmadpoor, “Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells”, Thin Solid Films, 516, pp. 4953-4957 (2008).
[62] D.R. Vij, N. Singh, “Luminescence of Inorganic Solids”, Academic Press (1966) pp.207.
[63] D.R. Vij, N. Singh, “Luminescence and Related Properties of II-VI Semiconductors”, Nova Science Publishers (1998) pp.1-35.
[64] T. Nakada, M. Mizutani, Y. Hagiwara, A. Kunioka, “High-effciency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer”, Solar Energy Materials &; Solar Cells, 67, pp. 255-260 (2001).
[65] Z. Q. Li, J. H. Shi, Q.Q. Liu, Z. A. Wang, Z. Sun, S. M. Huang, “Effect of [Zn]/[S] ratios on the properties of chemical bath deposited zinc sulfide thin films”, Applied Surface Science, 257, pp. 122-126 (2010).
[66] W.T. Yen, Y.C. Lin, P.C. Yao, J.H. Ke, Y.L. Chen, “Growth characteristics and properties of ZnO:Ga thin films prepared by pulsed DC magnetron sputtering”, Applied Surface Science, 256, pp. 3432-3437 (2010).
[67] Leonid F. Dmitriev, “A new approach to problem of enzymatic catalysis based on excited state of proteins and Le Chatelier’s principle”,464, pp. 12-18 (2007).
[68] K. Ahn, J.H. Jeon, S.Y. Jeong, J.M. Kim, H.S. Ahn, J.P. Kim, E.D. Jeong, C.R. Cho, “Chemical bonding states and atomic distribution within Zn(S,O) film prepared on CIGS/Mo/glass substrates by chemical bath deposition”, Current Applied Physics, pp. 1-5 (2012).
[69] So Ra Kang, Seung Wook Shin, Doo Sun Choi, A.V. Moholkar, Jong-Ha Moona, Jin Hyeok Kim, “Effect of pH on the characteristics of nanocrystalline ZnS thin films prepared by CBD method in acidic medium”, Current Applied Physics, 10, pp.473-477 (2010).
[70] S.D. Sartale, B.R. Sankapal, M. Lux-Steiner, A. Ennaoui, “Preparation of nanocrystalline ZnS by a new chemical bath deposition route”, Thin Solid Films, 480–481, 168-172 (2005).
[71] Wei-Long Liu,Wen-Jauh Chen , Shu-Huei Hsieh, Jen-Hua Yu, “Growth Behavior of Nanocrystalline ZnS Thin Films for Solar Cell Using CBD Technique”, Procedia Engineering, 36, pp. 46-53 (2012).
[72] B. E. Sernelious, K. F. Berggren, Z. C. Jin, I. Hamberg and C. G. Granqvist, “Band-gap tailoring of ZnO by means of heavy Al doping”, Physical Review, 37, pp. 10244-10248 (1998).
[73] W. Vallejo, C.Quinones, G.Gordillo, “A comparative study of thin films of Zn(O;OH)S and In(O;OH)S deposited on CuInS2 by chemical bath deposition method”, Journal of Physics and Chemistry of Solids, 73, pp. 573-578 (2012).
[74] Qi Liu, Mao Guobing, Ao Jianping, “Chemical bath-deposited ZnS thin films: Preparation and characterization”, Applied Surface Science, 254, pp. 5711-5714 (2008).
[75] E. Mollwo, F. Stöckmann, “Eine quantitative Deutung der elektrischen und lichtelektrischen Leitfähigkeit von Zinkoxyd auf Grund des Massenwirkungsgesetzes”, annalen der physik, 438, pp. 240-254 (1948).
[76] J. Y. Choi, K. J. Kim, J. B. Yoo and D. Kim, “Properties of Cadmium Sulfide Thin Films Deposited by Chemical Bath Deposition with Ultrasonication”, Solar Energy, 64, pp. 41-47 (1998).
[77] C.D. Lokhande, P.S. Patil, H. Tributsch, A. Ennaoui, “ZnSe thin films by chemical bath deposition method”, Solar Energy Materials &; Solar Cells, 55, pp. 379-393 (1998).
[78] Chen Liangyan, Zhang Daoli, Chen Qian, “The effects of the coplexing agents on the growth and properties of modified chemical bath deposited ZnS the films”, Proceedings of 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 599-602 (2006).
[79] A. Antony, K.V. Murali, R. Manoj, M.K. Jayaraj, “The effect of the pH value on the growth and properties of chemical-bath-deposited ZnS thin films”, Materials Chemistry and Physics, 90, pp. 106-110 (2005).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top