(100.26.179.251) 您好!臺灣時間:2021/04/12 21:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:趙亞孟
研究生(外文):Yameng Chao
論文名稱:糖尿病患巨噬細胞分泌PDGF-CC 誘導血管平滑肌增生
論文名稱(外文):PDGF-CC, secreted from Hig-Glucose Macrophage-Conditioned Medium, induced smooth muscle cells proliferation
指導教授:陳政男陳政男引用關係
指導教授(外文):Cheng-Nan Chen
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:生化科技學系研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:40
中文關鍵詞:糖尿病平滑肌細胞血小板衍生性生長因子
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第二型糖尿病患有非常高的風險會因心血管疾病而死亡,在糖尿病常見的眾多因子中,定義糖尿病的高血糖,扮演一個重要的角色。高血糖會透過許多機制造成血管的併發症,例如: 形成糖化終產物 (advanced glycation end products),增加氧化壓力,這些都會造成動脈粥狀硬化。過去許多研究集中在動脈硬化過程中,各種細胞激素和成長因子及其牽動的細胞的變化。然而,是否高血糖會誘導平滑肌細胞其PDGF(platelet-derived growth factor)表現,並進而促使動脈硬化,仍有待釐清。我們因此研究在高糖環境培養下的巨噬細胞培養液 (High Glucose Macrophage-Conditioned Medium, HG-MCM),是否會釋放某種因子誘導平滑肌增生。我們發現直接用高糖刺激平滑肌細胞,會誘導其增生;而用HG-MCM刺激血管平滑肌細胞,則會放大增生的效應。進一步探討其中的物質為PDGF-CC,無論使用PDGF-CC (platelet-derived growth factor-CC) 抗體,或是PDGF受體拮抗劑,都可以減弱PDGF-CC 誘導平滑肌增生的能力。這些研究結果顯示,在糖尿病粥狀硬化過程中,PDGF-CC及PDGF受體α和β, 都扮演一個重要的病態生理機轉角色。
Patients with type 2 diabetes mellitus are at risk of death from cardiovascular causes. Among the multipl risk facotors in patient with diabetes, hyperglycemia, which defines the diabetic state, plays an important role. Hyperglycemia can promote vascular complications by multiple mechanisms, with formation of advanced glycation end products and increased oxidative stress, proposed to contribute to atherosclerosis. Several studies have examined the expression of the various cytokines and growth factors that may be involved in the cellular changes that accompany developing lesions. However, whether high glucose could induce the PDGF (platelet-derived growth factor) expression in vascular smooth muscle cells (VSMCs) and in turns contribute to the development of atherosclerosis remains to be determined. We investigated the mechanism underlying the modulation of SMC proliferation in atherosclerosis by high-glucose treated macrophage-conditioned medium (MCM). We found that SMC proliferation can be induced by direct glucose stimulation and which was further augmented by high glucose-MCM. Pre-treatment of SMC with PDFG-R (platelet-derived growth factor-receptor receptor) anti-body block the proliferative effect of MCM. Pre-treatment of MCM with PDFG-C anti-body also diminish the proliferation of SMC. Our present data suggested that in the development of atherosclerosis in diabetes, PDGF-R and PDGF-C might be an important factor involved in the patho-physiological responses to high glucose in human VSMCs.
Chapter I Introduction
1.1 Diabetes mellitus and cardiovascular disease……………………. 1
1.2 Pathogenesis of atherosclerosis in diabetes………………………. 1
1.3 Role of VSMC in atherosclerosis………………………………... .3
1.4 Induction of inflammatory cytoines in macrophage under high glucose concentration…………………………………………….. 4
1.5 PDGF and atherosclerosis…………………………………………5
1.6 Cyclin-Dependent Kinase Inhibitors p27Kip1, p21Cip1, and
Vascular Smooth Muscle Cell Proliferation……………………...6
Chapter II Materials and Methods……………………………………8
2.1 Cell Cultures………………………………………………………9
2.2 Human monocyte isolation………………………………………..9
2.3 Preparation of human MCM……………………………………..10
2.4 Western Blot Analysis……………………………………………10
2.5 MTT assay and flow cytometric analysis for cell proliferarion.....10
Chapter III Results…………………………………………………..12
3.1 SMC proliferation induced by high glucose treatment…………..13
III
3.2 Glucose could promote SMC growth and its effect
further magnified by high glucose treated macrophage-conditioned medium (HG-MCM)………………..13
3.3 The stimulation of SMC proliferation by HG-MCM is in a concentration-dependent manner……………………………….13
3.4 Enhance proliferation of SMC by HG-MCM but not by
NG-MCM……………………………………………………….14
3.5 PDGF-CC in HG-MCM is major mediators for the induction of SMC proliferation………………………………………………14
3.6 HG-MCM induced SMC proliferation is mediated by PDGF
receptor α and PDGF receptor β………………………………..15
3.7 PI3K-p70S6K pathway is required for HG-MCM induced SMC proliferation……………………………………………………..16
3.8 HG-MCM decreased the expression of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip …………………………………..17
Chapter IV Discussion………………………………………………..18
Chapter V Reference………………………………………………….23
Figures and Tables……………………………………………………..31

1. Wild S, Roglic G, Green A, Sicree R, King H: Global prevalence of
diabetes: estimates for the year 2000 and projections for 2030.
Diabetes Care 27:1047–1053, 2004
2. Ruderman NB, Haudenschild C: Diabetes as an atherogen ic factor.
Prog Cardiovasc Dis 26:373– 412, 1984
3. Peter Gade, M.D., Pernille Vedel, M.D., Ph.D., Nicolai Larsen, M.D.,
Ph.D., Gunnar V.H. Jensen, M.D., Ph.D., Hans-Henrik Parving, M.D.,
D.M.Sc., and Oluf Pedersen, M.D., D.M.Sc. Multifactorial
Intervention and Cardiovascular Disease in Patients with Type 2
Diabetes, N Engl J Med 348; 5 , january 30,2003
4. Kannel, W. B., and D. L. McGee. 1979. Diabetes and glucose
tolerance as risk factors for cardiovascular disease: the Framingham
study. Diabetes Care. 2: 120–126
5. Gabriela Orasanu, MD, Jorge Plutzky, MD Boston, Massachusetts, The
Continuum of Diabetic Vascular Disease: From Macro- to
Micro- J Am Coll Cardiol. 2009 February 3; 53(5 Suppl): S35–S42.
6. Braun M, Pietsch P, Schror K, Baumann G, Felix SB. Cellular adhesion
molecules on vascular smooth muscle cells. Cardiovasc Res.
1999;41:395–401
7. Amanda C. Doran, Nahum Meller, Coleen A. McNamara, Role of
Smooth Muscle Cells in the Initiation and Early
Progression of Atherosclerosis, Arterioscler Thromb Vasc Biol
2008;28:812-819
8. Suzuki LA, Poot M, Gerrity RG, Bornfeldt KE. Diabetes accelerates
smooth muscle accumulation in lesions of atherosclerosis
26
Diabetes.2001;50:851-860
9. Dasu MR, Devaraj S, Jialal I. High glucose induces IL-1 beta
expression in human monocytes: mechanistic insights. Am J Physiol
Endocrinol Metab 2007;293:E337– 46
10. Guha M, Bai W, Nadler J, Natarajan R: Molecular mechanisms of
TNF-alpha gene expression in monocytic cells via
hyperglycemia-induced oxidant stress dependent and independent
pathways. J Biol Chem 275 : 17728 –17739, 2000
11. Shanmugam, N., Reddy, M. A., Guha, M., and Natarajan, R. High
Glucose-Induced Expression of Proinflammatory Cytokine and
Chemokine Genes in Monocytic Cells (2003) Diabetes 52, 1256-1264
12. Chen TC, Chien SJ, Kuo HC, Huang WS, Sheen JM, Lin TH, Yen CK,
Sung ML, Chen CN. High Glucose-treated Macrophages Augment
E-Selectin Expression in Endothelial Cells J. Biol. Chem. 2011 286:
25564-25573
13. M Morigi, S Angioletti, B Imberti, R Donadelli, G Micheletti, M
Figliuzzi, A Remuzzi, C Zoja and G Remuzzi
Leukocyte-endothelial interaction is augmented by high glucose
concentrations and hyperglycemia in a NF-kB-dependent fashion. J
Clin Invest. 1998;101(9):1905–1915
14. Vascular effects of cytokines and growth-regulatory molecules. In:
Gearing A, Rossio J, Oppenheim J, eds. The clinical applications of
cytokines: role in pathogenesis, diagnosis and therapy. Oxford
University Press, New York, 1993
15. Ross, R., Masuda, J., Raines, E. W., Gown, A. M., Katsudo, S.,
27
Sasahara, M., Maiden, L. T., Masuko, H. & Sato, H. Localisation of
PDGF-B protein in macrophages in all phases of atherogenesis.
Science 248, 1009-1012
16. Raines, E.W. 2004. PDGF and cardiovascular disease. Cytokine
Growth Factor Rev. 15: 237–254
17. Cheng-Nan Chen, Yi-Shuan J. Li, Yi-Ting Yeh, Pei-Ling Lee,
Shunichi Usami, Shu Chien, and Jeng-Jiann Chiu . Synergistic roles
of platelet-derived growth factor-BB and interleukin-1β in phenotypic
modulation of human aortic smooth muscle cells, PNAS February
21, 2006 vol. 103 No. 8 , 2665–2670
18. Marshall CJ. Specificity of receptor tyrosine kinase signaling:
transient versus sustained extracellular signal-regulated kinase
activation. Cell 80: 179–185, 1995
19. Bornfeldt KE, Raines EW, Nakano T, Graves LM, Krebs EG, Ross R.
Insulin-like growth factor-I and platelet-derived growth factor-BB
induce directed migration of human arterial smooth muscle cells via
signaling pathways that are distinct from those of proliferation. J Clin
Invest 93:1266–1274, 1994
20. Gordon D, Reidy MA, Benditt EP, et al. Cell proliferation in human
coronary arteries. Proc Natl Acad Sci U S A. 1990;87:4600–4604
21. Tanner FC, Yang Z-Y, Gordon D, et al. Expression of
cyclin-dependent kinase inhibitors in vascular disease. Circ Res.
1998;82:396–403
22. Mao-Lin Sung, Chia-Ching Wu, Hsin-I Chang, Chia-Kuang Yen,
Heng Jung Chen, Ju-Chien Cheng, Shu Chien, Cheng-Nan Chen
28
Shear Stress Inhibits Homocysteine-Induced Stromal Cell–Derived
Factor-1 Expression in Endothelial Cells.Circ Res. 2009;105:755-763
23. Diabetes mellitus induces accelerated growth of aortic smooth muscle
cells: association with overexpression of PDGF β-receptors
European Journal of Clinical Investigation (1993) 23, 84-90
24. Hu, Q., Klippel, A., Muslin, A.J., Fantl, W.J., and Williams, L.T.
1995. Ras-dependent induction of cellular responses by constitutively
active phosphatidylinositol-3 kinase. Science 268: 100–102.
25. Beatriz Alvarez , Elia Garrido., Jose A. Garcia-Sanz., Ana C.
Carrera Phosphoinositide 3-Kinase Activation Regulates Cell
Division Time by Coordinated Control of Cell Mass and Cell Cycle
Progression Rate (2003) J. Biol. Chem 278:26466–26473
26. Izumi Y, Kim S, Namba M, Yasumoto H, Miyazaki H, Hoshiga M,
Kaneda Y, Morishita R, Zhan Y, Iwao H. Gene transfer of
dominantnegative mutants of extracellular signal-regulated kinase and
c-Jun NH2- terminal kinase prevents neointimal formation in
balloon-injured rat artery. Circ Res. 2001;88:1120–1126
27. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane
PW, McKillop JH, Packard CJ. Prevention of coronary heart disease
with pravastatin in men with hypercholesterolemia. N Engl J Med.
1995;333:1301-1307
28. Osterud B, Bjorklid E. Role of monocytes in atherogenesis. Physiol
Rev 2003;83:1069–1112
29. Growth factors induce monocyte binding to vascular smooth muscle
cells: implications for monocyte retention in atherosclerosis
29
Am J Physiol Cell Physiol. 2004 Sep;287(3):C707-14
30. Billett MA, Adbeish IS, Alrokayan SA, Bennett AJ, Marenah CB,
White DA. Increased expression of genes for platelet-derived growth
factor in circulating mononuclear cells of hypercholesterolemic
patients. Arterioscler Thromb Vasc Biol. 1996;16:399–406
31. Inaba T, Ishibashi S, Gotoda T, Kawamura M, Morino N, Nojima Y,
Kawakami M, Yazaki Y, Yamada N. Enhanced expression of
platelet-derived growth factor-beta receptor by high glucose.
Involvement of platelet- derived growth factor in diabetic angiopathy.
Diabetes. 1996;45:507–512
32. Diabetic conditions promote binding of monocytes to vascular smooth
muscle cells and their subsequent differentiation
Am J Physiol Heart Circ Physiol. 2010 March; 298(3): H736–H745
33. Cai Q, Lanting L, Natarajan R. Growth factors induce monocyte
binding to vascular smooth muscle cells: implications for monocyte
retention in atherosclerosis. Am J Physiol Cell Physiol 287:
C707–C714, 2004
34. Gilbertson DG, Duff ME, West JW, Kelly JD, Sheppard PO,
Hofstrand PD, Gao Z, Shoemaker K, Bukowski TR, Moore M,
Feldhaus AL, Humes JM, Palmer TE, Hart CE. Platelet-derived
growth factor C (PDGF-C), a novel growth factor that binds to PDGF
alpha and beta receptor. J Biol Chem. 2001;276:27406–27414.
35. A Jawien, D F Bowen-Pope, V Lindner, S M Schwartz, and A W
Clowes. Platelet-derived growth factor promotes smooth muscle
migration and intimal thickening in a rat model of balloon angioplasty.
30
J Clin Invest. 1992 February; 89(2): 507–511.
36. Markus Lassila, Terri J. Allen, Zemin Cao, Vicki Thallas, Karin A.
Jandeleit-Dahm, Riccardo Candido, Mark E. Cooper. Imatinib
Attenuates Diabetes-Associated Atherosclerosis, Arterioscler Thromb
Vasc Biol. 2004;24:935-942
37. Yumei Zhan, Shokei Kim, Yasukatsu Izumi, Yasuhiro Izumiya,
Takafumi Nakao, Hitoshi Miyazaki, Hiroshi Iwao. Role of JNK, p38,
and ERK in Platelet-Derived Growth Factor–Induced Vascular
Proliferation, Migration, and Gene Expression Arterioscler Thromb
Vasc Biol. 2003;23:795-801
38. Matsushita H, Morishita R, Kida I, Aoki M, Hayashi S, Tomita N,
Yamamoto K, Moriguchi A, Noda A, Kaneda Y, Higaki J, Ogihara T.
Inhibition of growth of human vascular smooth muscle cells by
overexpression of p21 gene through induction of apoptosis.
Hypertension. 1998;31:493– 498
39. Nourse J, Firpo E, Flanagan WM, Coats S, Polyak K, Lee MH,
Massague J, Crabtree GR, Roberts JM. Interleukin-2-mediated
elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented
by rapamycin. Nature. 1994 Dec 8;372(6506):570–573
40. Coats S, Flanagan WM, Nourse J, Roberts JM. Requirement of
p27Kip1 for restriction point control of the fibroblast cell cycle.
Science. 1996; 272:877–880
41. Servant MJ, Coulombe P, Turgeon B, Meloche S. Differential
regulation of p27(Kip1) expression by mitogenic and hypertrophic
factors: involvement of transcriptional and posttranscriptional
31
mechanisms. J Cell Biol. 2000;148:543–556
42. Castro C, Diez-Juan A, Cortes MJ, Andres V. Distinct regulation of
mitogen-activated protein kinases and p27Kip1 in smooth muscle cells
from different vascular beds: a potential role in establishing regional
phenotypic variance. J Biol Chem. 2003;278:4482–4490
43. Zhan Y, Kim S, Yasumoto H, Namba M, Miyazaki H, Iwao H. Effects
of dominant-negative c-Jun on platelet-derived growth factor-induced
vascular smooth muscle cell proliferation. Arterioscler Thromb Vasc
Biol. 2002;22:82–88
44. Vlassara H., Brownlee, M., Manogue, K. R., Dinarello, C. A. &
Pasagian, A. Cachectin/TNF and IL-1 induced by glucose-modified
proteins: role in normal tissue remodeling.
(1988) Science 240, 1546-1548
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔