跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/29 13:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳曉智
研究生(外文):Wu, Hsiao-Chih
論文名稱:類風濕性關節炎及全身性紅斑性狼瘡之CD36 mRNA表現與動脈粥狀硬化危險因子
論文名稱(外文):CD36 mRNA expression and atherosclerotic risk factors in rheumatoid arthritis and systemic lupus erythematosus
指導教授:左克強
指導教授(外文):Tim K. Tso
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:類風濕性關節炎全身性紅斑性狼瘡動脈粥狀硬化CD36
外文關鍵詞:Rheumatoid arthritisSystemic lupus erythematosusAtherosclerosisCD36
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
類風濕性關節炎(Rheumatoid arthritis, RA)患者較一般人易有動脈粥狀硬化的情形,中風或心肌梗塞的機率也明顯的增加;全身性紅斑性狼瘡(Systemic lupus erythematosus, SLE) 患者體內的慢性發炎,亦導致提早誘發動脈粥狀硬化,而提高了心血管疾病風險。本篇研究目的為分析類風濕性關節炎及全身性紅斑性狼瘡患者CD36 mRNA表現量與血漿動脈粥狀硬化危險因子之相關性。
本研究對象共88位,包括RA 患者28人、SLE患者30人及對照受試者30人。以週邊血液單核球細胞 (Peripheral blood mononuclear cell, PBMC) 之RNA,利用RT-PCR分析CD36 mRNA表現量及並測定血漿中advanced glycation end product (AGEs)、oxidized low-density lipoprotein (Ox-LDL)、receptor for advanced glycation end product (RAGE)、interleukin-17 (IL-17)、matrix metalloproteinases-2 (MMP-2)、MMP-9、tissue inhibitor of metalloproteinases-1 (TIMP-1)、TIMP-2之濃度。
研究結果發現,RA患者之CD36 mRNA表現量顯著低於對照受試者(P= 0.003),而SLE患者與對照受試者之CD36 mRNA表現量相似。RA患者AGEs及Ox-LDL濃度有高於SLE患者的趨勢,而SLE患者Total Cholesterol (TC)、Triglyceride、LDL-C及TC/HDL-C有比RA患者高的趨勢。於動脈粥狀硬化因子分析結果,RA患者MMP-9及MMP-9/TIMP-1比值與SLE患者比較有較高的趨勢,而SLE患者RAGE、MMP-2、TIMP-1及MMP-2/TIMP-2與RA患者比較有較高的趨勢,其中MMP-2/TIMP-2顯著高於RA患者 (P < 0.001)。在RA及SLE患者皆發現血漿中Ox-LDL濃度會隨著心血管風險增加而有上升的趨勢,且在RA患者,當血漿中TC濃度越高時,MMP-2/TIMP-2比值也有顯著升高的趨勢 (P= 0.033),表示MMP-2活性顯著增加。在SLE患者隨著血漿中HDL-C濃度上升MMP-9/TIMP-1比值亦有顯著上升(P= 0.001),但隨著心血管風險指標TC/HDL-C比值上升,血漿中MMP-9/TIMP-1卻有顯著下降(P= 0.003),表示心血管風險指標越高,MMP-9活性顯著降低。
綜合以上結果,當血漿中Ox-LDL濃度較高時,CD36 mRNA表現量有顯著上升。RA患者CD36 mRNA表現量雖低於SLE患者,但其AGEs及Ox-LDL濃度較高,且MMP-9/TIMP-1比值亦較高,表示RA患者MMP-9活性比SLE患者高,推測RA患者其動脈粥狀硬化風險與氧化壓力及MMP-9活性有關,且當TC越高,其體內MMP-2活性也顯著增加;而SLE患者則是因其血脂異常及MMP-2活性較高有關,但其心血管風險指標越高MMP-9活性顯著降低。

Patients with rheumatoid arthritis (RA) tend to have higher incidence of atherosclerosis and the chances of stroke or myocardial infarction also increase significantly in those patients. Systemic lupus erythematosus (SLE) have higher risk of atherosclerosis and cardiovascular diseases. The aim of this study was to identify CD36 mRNA expression and to determine its association with atherosclerotic risk factors in patients with rheumatoid arthritis and systemic lupus erythematosus.
A total of 88 subjects, including 28 patients with RA, 30 patients with SLE and 30 control subjects participated in this study. Peripheral blood mononuclear cell (PBMC) RNA was used to analyze the CD36 mRNA expression by RT-PCR. Plasma concentrations of the advanced glycation end products (AGEs), oxidized low-density lipoprotein (Ox-LDL), receptor for advanced glycation end products (RAGE), interleukin-17 (IL-17), matrix metalloproteinases-2 (MMP-2), MMP-9, tissue inhibitor of metalloproteinases-1 (TIMP-1), TIMP-2 were determined by enzyme-linked immunosorbent assay.
CD36 mRNA expression in RA patients was significantly lower than control subjects (P = 0.003), and CD36 mRNA expressions of SLE patients and control subjects have no significant difference. AGEs and Ox-LDL concentrations of RA patients tended to be higher than those in SLE patients. Total Cholesterol (TC), triglyceride, LDL-C and TC/HDL-C of SLE patients tended to be higher than those in RA patients. Patients with SLE have significantly higher ratio of MMP-2/TIMP-2 than RA patients (P <0.001). Both RA and SLE patients have increased Ox-LDL levels along with increased cardiovascular risk. In RA patients, plasma TC concentration positively correlated with the ratio of MMP-2/TIMP-2 (P = 0.033). In SLE patients, HDL-C concentration positively related to the ratio of MMP-9/TIMP-1 (P = 0.001), but TC/HDL-C ratio negatively correlated with ratio of MMP-9/TIMP-1 (P = 0.003).
In conclusion, we found that both RA and SLE patients expressed different levels of CD36 mRNA. The risk of atherosclerosis was related to oxidative stress and MMP-9 activity in RA patients, whereas it was associated with lipid profile and MMP-2 activity in SLE patients.

目錄
中文摘要 I
Abstract III
目錄 V
表目錄 IX
圖目錄 X
縮寫總表 XI
第一章、前言
1.1研究動機 1
1.2研究目的 2
第二章、 文獻整理
2.1類風濕性關節炎文獻回顧 3
2.1.1類風濕性關節炎之簡介 3
2.2全身性紅斑性狼瘡文獻回顧 4
2.2.1全身性紅斑性狼瘡之簡介 4
2.3. 類風濕性關節炎及全身性紅斑性狼瘡與動脈粥狀硬化之相關性 5
2.3.1動脈粥狀硬化形成 6
2.4類風濕性關節炎及全身性紅斑性狼瘡與糖化終產物及糖化終產物接受器之相關性 7
2.5促發炎因子與動脈粥狀硬化及糖化終產物之相關性 8
2.5.1介白素-17 ( Interleukin-17, IL-17) 8
2.5.2基質金屬蛋白酶-2與基質金屬蛋白酶-9 9
2.5.3組織基質金屬蛋白酶抑制劑-1與組織基質金屬蛋白酶抑制劑-2
10
2.6 巨噬細胞CD36與氧化型低密度脂蛋白、糖化終產物及動脈粥狀硬化之相關性 10
第三章、實驗材料方法 18
3.1實驗架構 18
3.2實驗材料 19
3.2.1試驗藥品 19
3.2.2儀器設備 19
3.2.3實驗對象 20
3.3實驗方法 21
3.3.1全血之週邊血液單核球細胞 ( Peripheral blood mononuclear cell, PBMC) 及血漿分離 21
3.3.2氧化型低密度脂蛋白 ( Oxidized low-density lipoprotein, Ox-LDL) 含量分析 21
3.3.3糖化終產物 ( Advanced Glycation End product, AGEs) 含量分析 22
3.3.4介白素-17 (Interleukin-17, IL-17) 含量分析 22
3.3.5糖化終產物接受器 ( Receptor for Advanced Glycation End product, RAGE) 含量分析 22
3.3.6基質金屬蛋白酶-2 ( Matrix metalloproteinases-2, MMP-2) 含量分析 23
3.3.7基質金屬蛋白酶-9 ( Matrix metalloproteinases-9, MMP-9) 含量分析 23
3.3.8組織基質金屬蛋白酶抑制劑-1 (Tissue inhibitor of metalloproteinases 1, TIMP-1) 含量分析 24
3.3.9組織基質金屬蛋白酶抑制劑-2 (Tissue inhibitor of
metalloproteinases 2, TIMP-2) 含量分析 25
3.3.10血漿葡萄糖含量分析 25
3.3.11血漿胰島素含量分析 26
3.3.12血漿膽固醇含量分析 26
3.3.13血漿高密度脂蛋白膽固醇含量分析 27
3.3.14血漿三酸甘油酯含量分析 27
3.3.15 CD36 mRNA表現量 28
3.4統計分析 30
第四章、 結果 31
4.1 RA患者及SLE患者其基本資料及血液生化數值分析 31
4.2 CD36 mRNA表現量分析 31
4.3 血漿檢測因子之平均數比較分析 32
4.4 血漿檢測因子與CD36 mRNA表現量相關性 33
4.5 血漿檢測因子間之相關性 33
4.6 血漿檢測因子濃度依性別、年齡、生化檢測數值分組比較 35
第五章、 討論 58
5.1 RA患者、SLE患者與對照受試者血漿生化指標 58
5.2 CD36 mRNA表現量 59
5.3血漿檢測因子濃度相關性 60
5.4 RA及SLE患者於血漿檢測危險因子與年齡、性別及生化指標分析之異同 63
第六章、 結論 65
第七章、 參考文獻 66
7.1 中文文獻 66
7.2 英文文獻 66


第七章、參考文獻
7.1 中文文獻
行政院衛生署國健局。2012;100年國人十大死因。

曾光毅、曾嵩智。類風濕性關節炎。家庭醫學與基層醫療。2010;第25卷第一期。

劉宏文主編。風濕病學。中華民國風濕病學會,合記圖書出版社。2005;第4章:40-47。

7.2 英文文獻
Bendeck MP et al. Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ Res. 1994; 75(3): 539-545.

Carroll L, Hannawi S, Marwick T, Thomas R. Rheumatoid arthritis: links with cardiovascular disease and the receptor for advanced glycation end products. Wien Med Wochenschr. 2006 ; 156/1–2: 42–52.

Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T. Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem. 2003; 253:269–285.

Chang YH, Lin IL, Tsay GJ, Yang SC, Yang TP, Ho KT, Hsu TC, Shiau MY. Elevated circulatory MMP-2 and MMP-9 levels and activities in patients with rheumatoid arthritis and systemic lupus erythematosus. Clin Biochem. 2008; 41(12): 955-9.

Cheng M, Hashmi S, Mao X, Zeng QT. Relationships of adiponectin and matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 ratio with coronary plaque morphology in patients with acute coronary syndrome. Can J Cardiol. 2008; 24(5): 385-90.

Cohen Tervaert JW. Translational mini-review series on immunology of vas-cular disease: accelerated atherosclerosis in vasculitis. Clin Exp Immunol. 2009; 156(3): 377–85.

Collot-Teixeira S, Martin J, McDermott-Roe C, Poston R, McGregor JL. CD36 and macrophages in atherosclerosis. Cardiovasc Res. 2007; 75(3): 468-477.

Daugherty A et al. Thematic review series: The immune system and atherogenesis. Cytokine regulation of macrophage functions in atherogenesis. J Lipid Res. 2005; 46(9): 1812-1822.

de Leeuw LK, Graaff R, de VR, Dullaart RP, Smit AJ, Kallenberg CG et al. Accumulation of advanced glycation endproducts in patients with systemic lupus erythematosus. Rheumatology. 2007; 46: 1551–6.

Dedoussis GVZ, Kaliora AC, Psarras S, Chiou A, Mylona A, Papadopoulos NG, Andrikopoulos NK. Antiatherogenic effect of Pistacia lentiscus via GSH restoration and downregulation of CD36 mRNA expression. Atherosclerosis. 2004; 174: 293–303.

de-Groot L, Posthumus M D, Kallenberg CGM, Bijl M. Risk factors and early detection of atherosclerosis in rheumatoid arthritis. Eur J Clin Invest. 2010; 40(9): 835-42.

Du H, Li P, Wang J, Qing X, Li W. The interaction of amyloid β and the receptor for advanced glycation endproducts induces matrix metalloproteinase-2 expression in brain endothelial cells. Cell Mol Neurobiol. 2012; 32(1): 141-7.

Feng J, Han J, Pearce SF, Silverstein RL, Gotto AM Jr, Hajjar DP, Nicholson AC. Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-gamma. J Lipid Res. 2000; 41(5): 688-96.

Fransen J, van Riel PL. The Disease Activity Score and the EULAR response criteria. Clin Exp Rheumatol. 2009; 23 (Suppl. 39): S93-S99.

Gharagozlian S, Svennevig K, Bangstad HJ, Winberg JO, Kolset SO. Matrix metalloproteinases in subjects with type 1 diabetes. BMC Clin Pathol. 2009; 9: 7.

Giansante C, Fiotti N, Di Chiara A, Altamura N, Wasserman S, Fioretti P, Guarnieri G. In-hospital outcome of patients with acute coronary syndrome: relationship with inflammation and remodeling markers. J Cardiovasc Med. 2007; 8: 602–607.

Glass KG and Witztum JL. Atherosclerosis: The road ahead. Cell. 2001; 104: 503-516.

Greenberg B, Michalska M. Systemic Lupus Erythematosus. Measures to keep this unpredictable disease under control. Postgrad Med. 1999; 106(6): 213-8, 221-3.

Guest CB et al. Phagocytosis of cholesteryl ester is amplified in diabetic mouse macrophages and is largely mediated by CD36 and SR-A. PLoS ONE. 2007; 2(6): 511.

Guzmán J, Cardiel MH, Arce-Salinas A, Sánchez-Guerrero J, Alarcón-Segovia D. Measurement of disease activity in systemic lupus erythematosus. Prospective validation of 3 clinical indices. J Rheumatol. 1992; 19(10): 1551-8.

Haitoglou CS, Tsilibary EC, Brownlee M, Charonis AS. Altered cellular interactions between endothelial cells and nonenzymatically glucosylated laminin/type IV collagen. J Biol Chem. 1992; 267(18):12404-7.

Han CY, Park SY, Pak YK. Role of endocytosis in the transactivation of nuclear factor-kappa B by oxidized low-density lipoprotein. Biochem J. 2000; 350 Pt 3: 829-837.

Han J, Hajjar DP, Febbraio M, and Nicholson AC. Native and modified low density lipoproteins increase the functional expression of the macrophage class B scavenger receptor, CD36. J Biol Chem. 1997; 272(34): 21654-9.

Heo YJ, Oh HJ, Jung YO, Cho ML, Lee SY, Yu JG, Park MK, Kim HR, Lee SH, Park SH, Kim HY. The expression of the receptor for advanced glycation end-products (RAGE) in RA-FLS is induced by IL-17 via Act-1. Arthritis Res Ther. 2011; 13(4): R113.

Hochberg MC. Updating the American college of rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997; 40: 1725

Inokubo Y, Hanada H, Ishizaka H, Fukushi T, Kamada T, Okumura K. Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am Heart J. 2001; 141: 211–217.

Janabi M et al. Oxidized LDL-induced NF-kappa B activation and subsequent expression of proinflammatory genes are defective in monocyte-derived macrophages from CD36-deficient patients. Arterioscler Thromb Vasc Biol. 2000; 20(8): 1953-1960.

Kageyama Y, Takahashi M, Ichikawa T, Torikai E, Nagano A. Reduction of oxidative stress marker levels by anti-TNF-alpha antibody, infliximab, in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2008;26:73–80.

Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Anderson L, Koehn S, Rhee JS, Silverstein R, Hoff HF, Freeman MW. Scavenge receptors class A-Ⅰ/Ⅱand CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem. 2002; 277(51): 49982-8.

Liao HH, Wang YC, Chen MCM, Tsai HY, Lin J, Chen ST, Tsay GJ, Cheng SL. Down-regulation of granulocyte-macrophage colony-stimulating factor by 3C-like proteinase in transfected A549 human lung carcinoma cells. BMC Immunology. 2011; 12:16.

Lipsky RH, et al. The carboxyl-terminal cytoplasmic domain of CD36 is required for oxidized low-density lipoprotein modulation of NF-kappa B activity by tumor necrosis factor-alpha. Recept Signal Transduct. 1997; 7(1): 1-11.

Luttun A et al. Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation. 2004; 109(11) : 1408-1414.

Makowski GS, Ramsby ML. Concentrations of circulating matrix metalloproteinase 9 inversely correlate with autoimmune antibodies to double stranded DNA: implications for monitoring disease activity in systemic lupus erythematosus. Mol Pathol. 2003; 56(4): 244-7.

Moore KJ, Freeman MW. Scavenger Receptors in Atherosclerosis-Beyond Lipid Uptake. Arterioscler Thromb Vasc Biol. 2006; 26(8): 1702-11.

Nagy L et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998; 93(2): 229-240.

Ohgami N, Nagai R, Ikemoto M, Arai H, Miyazaki A, Hakamata H, Horiuchi S, Nakayama H. CD36, serves as a receptor for advanced glycation endproducts (AGE). J Diabetes Complications. 2002; 16(1): 56-9.

Pawlak K, Tankiewicz J, Mysliwiec M, Pawlak D. Systemic levels of MMP-2/TIMP-2 and cardiovascular risk in CAPD patients. Nephron Clin Pract. 2010; 115(4): c251-8.

Petri M, Perez-Gutthann S, Spence D, Hochberg MC. Risk factors for coronary artery disease in patients with systemic lupus erythematosus. Am J Med. 1992; 93(5): 513-9.

Podrez EA, Febbraio M, Sheobani N, Schmitt D, Silverstein RL, Hajjar DP, Cohen PA, Frazier WA, Hoff HF, Hazen SL. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest. 2000; 105(8): 1095-108.

Rysz J, Banach M, Stolarek RA, Mikhailidis DP, Cialkowska-Rysz A, Pokoca L, Piechota M, Baj Z. Serum metalloproteinases MMP-2, MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in patients on hemodialysis. Int Urol Nephrol. 2011; 43: 491–498.

Rysz J, Banach M, Stolarek RA, Mikhailidis DP, Cialkowska-Rysz A, Pokoca L, Piechota M, Baj Z. Serum metalloproteinases MMP-2, MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in patients on hemodialysis. Int Urol Nephrol. 2011; 43(2): 491-8.

Santos MJ, Vinagre F, Silva JJ, Gil V, Fonseca JE. Cardiovascular risk profile in systemic lupus erythematosus and rheumatoid arthritis: a comparative study of female patients. Acta Reumatol Port. 2010; 35(3): 325-32.

Shiffman D, Mikita T, Tai JT, Wade DP, Porter JG, Seilhamer JJ, Somogyi R, Liang S, Lawn RM. Large scale gene expression analysis of cholesterol-loaded macrophages. J Biol Chem. 2000; 275(48): 37324-32.

Sun Y, Scavini M, Orlando RA, Murata GH, Servilla KS, Tzamaloukas AH, Schrader R, Bedrick EJ, Burge MR, Abumrad NA, Zager PG. Increased CD36 expression signals monocyte activation among patients with type 2 diabetes. Diabetes Care. 2010; 33(9): 2065-7.

Svenungsson E, Jensen-Urstad K, Heimbürger M, Silveira A, Hamsten A, de Faire U, Witztum JL, Frostegård J. Risk factors for cardiovascular disease in systemic lupus erythematosus. Circulation. 2001; 104(16): 1887-93.

Takeuchi M, Yanase Y, Matsuura N, Yamagishi SS, Kameda Y, Bucala R, Makita Z. Immunological detection of a novel advanced glycation end-product. Mol Med. 2001; 7(11): 783-91.

Taleb S, Romain M, Ramkhelawon B, Uyttenhove C, Pasterkamp G, Herbin O, et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med. 2009; 206(10): 2067–77.

Tanaka S, Avigad G, Brodsky B, Eikenberry EF. Glycation induces expansion of the molecular packing of collagen. J Mol Biol. 1988; 203(2):495-505.

Tedgui A and Mallat Z. Cytokines in atherosclerosis: Pathogenic and regulatory pathways. Physiol Rev. 2006; 86(2): 515-81.

Tontonoz P et al. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 1998; 93(2): 241-252.

Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARγpromotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 1998; 93: 241–252.

Tsukushi S, Katsuzaki T, Aoyama I, Takayama F, Miyazaki T, Shimokata K, Niwa T. Increased erythrocyte 3-DG and AGEs in diabetic hemodialysis patients: role of the polyol pathway. Kidney Int. 1999; 55(5):1970-6.

Villeneuve E, Nam J, Emery P. 2010 ACR-EULAR classification criteria for rheumatoid arthritis. Rev Bras Reumatol. 2010 Oct;50(5): 481-3.

von Vietinghoff S, Ley K. Interleukin 17 in vascular inflammation. Cytokine Growth Factor Rev. 2010; 21(6): 463-9.

Watanabe N, Ikeda U. Matrix metalloproteinases and atherosclerosis. Curr Atheroscler Rep. 2004; 6: 112–120.

Wautier JL, Guillausseau PJ. Advanced glycation end products, their receptors and diabetic angiopathy. Diabetes Metab. 2001; 27(5 Pt 1): 535-42.

Xanthis A, Hatzitolios A, Fidani S, Befani C, Giannakoulas G, Koliakos G. Receptor of advanced glycation end products (RAGE) positively regulates CD36 expression and reactive oxygen species production in human monocytes in diabetes. Angiology. 2009; 60(6): 772-9.

Xanthis A, Hatzitolios A, Fidani S, Befani C, Giannakoulas G, Koliakos G. Receptor of advanced glycation end products (RAGE) positively regulates CD36 expression and reactive oxygen species production in human monocytes in diabetes. Angiology. 2009; 60(6): 772-9.

Xu XP, Meisel SR, Ong JM, Kaul S, Cercek B, Rajavashisth TB, Sharifi B, Shah PK. Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and its tissue inhibitor in human monocyte-derived macrophages. Circulation. 1999 Mar 2;99(8):993-8.

Yancey PG and Jerome WG. Lysosomal cholesterol derived from mildly oxidized low density lipoprotein is resistant to efflux. J Lipid Res. 2001; 42(3): 317-27.

Yen JH, Yang DJ, Chen MC, Hsieh YF, Sun YS, Tsay GJ. Glycine tomentella Hayata inhibits IL-1b and IL-6 production, inhibits MMP-9 activity, and enhances RAW264.7 macrophage clearance of apoptotic cells. J Biomed Sci. 2010; 17: 83.

Yuasa-Kawase M, Masuda D, Yamashita T, Kawase R, Nakaoka H, Inagaki M, Nakatani K, Tsubakio-Yamamoto K, Ohama T, Matsuyama A, Nishida M, Ishigami M, Kawamoto T, Komuro I, Yamashita S. Patients with CD36 deficiency are associated with enhanced atherosclerotic cardiovascular diseases. J Atheroscler Thromb. 2012; 19(3): 263-75.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top