(3.230.143.40) 您好!臺灣時間:2021/04/19 05:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏乃嘉
論文名稱:貯存溫度對高畜黑豬背最長肌calpain及desmin屠後降解變化之影響
論文名稱(外文):Postmortem Degradation of Calpain and Desmin of KHAPS Black Pig Longissimus dorsi Muscle at 5°C and 25°C
指導教授:周榮吉教授
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:動物科學系研究所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
中文關鍵詞:中性依鈣酵素
相關次數:
  • 被引用被引用:3
  • 點閱點閱:184
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的,旨在探討貯存溫度對高畜黑豬背最長肌(longissimus dorsi) calpain及desmin屠後降解變化之影響。高畜黑豬(平均活重約100-110 Kg之女豬)於屏東市台畜公司依正常程序屠宰後,取下兩側之背最長肌。兩側之背最長肌肉樣各切成六等份,並分別真空包裝,一側背最長肌樣品置於25°C水浴;另一側則為對照組置於5°C水浴;兩組樣品每隔0 (屠後30分鐘)、3、6、12、24及48小時逢機採集分析。結果顯示,貯存於25°C之高畜黑豬屠後背最長肌pH下降、μ-及m-calpain活性、μ-calpain自體降解(autolysis)均較5℃為快;但貯存於25°C樣品之完整desmin降解較5°C為慢。因此,本試驗結果顯示,背最長肌於屠後初期之貯存溫度,可影響pH下降、μ-及m-calpain活性、μ-calpain自體降解及desmin之降解速度。
壹、前言 1
貳、文獻檢討 3
一、食肉的低溫熟成變化 3
(一) 屠後貯存期間蛋白質之降解變化 4
1. 肌球蛋白和肌動蛋白之降解 4
2. Troponin-T降解 4
3. Desmin之降解 6
4. Titin之降解 7
5. Nebulin之降解 8
6. Vinculin與Metavinculin之降解 8
7. Talin之降解 9
8. Filamin之降解 9
二、可能參與食肉低溫熟成有關之酵素系統 11
(一) 中性依鈣酵素系統(calpain system) 11
1. µ-及m-calpain之結構特性 12
2. Calpain之自體水解 18
3. Calpain與食肉屠後肌原纖維蛋白質降解之關係 19
(二) Cathepsin酵素系統 22
(三) Proteasome酵素系統 25
(四) Caspase酵素系統 26
參、材料與方法 29
一、試驗材料之製備 29
二、試驗方法 29
(一) pH值測定 29
(二) 肌原纖維之製備 30
(三) 蛋白質濃度之測定 30
(四) 肌原纖維或透析蛋白質之電泳(SDS-PAGE)測定 31
(五) Western blot分析 31
(六) Casein zymography 32
(七) 影像分析 33
(八) 統計分析 33
肆、結果與討論 34
一、貯存溫度對高畜黑豬屠後背最長肌pH之影響 34
二、貯存溫度對高畜黑豬屠後背最長肌calpain活性之影響 36
三、貯存溫度對高畜黑豬屠後背最長肌μ-calpain自體降解之影響 42
四、貯存溫度對高畜黑豬屠後背最長肌desmin之影響 49
伍、結論 52
陸、參考文獻 53
柒、附錄一 73

圖1、µ-calpain、m-calpain及calpastatin之結構圖 15
圖2、m-Calpain之晶體結構圖 16
圖3、影像分析貯存溫度對高畜黑豬屠後背最長肌pH值之影響 35
圖4、高畜黑豬背最長肌屠後貯存於5℃與25℃之casein zymograms 39
圖5、影像分析貯存溫度對高畜黑豬屠後背最長肌之μ-calpain相對活性變化 40
圖6、影像分析貯存溫度對高畜黑豬屠後背最長肌之m-calpain相對活性變化 41
圖7、高畜黑豬背最長肌屠後貯存於5℃與25℃對μ-calpain 80 kDa次單位之降解變化 45
圖8、影像分析貯存溫度對高畜黑豬屠後背最長肌之μ-calpain 80 kDa 次單位相對含量之變化 46
圖9、影像分析貯存溫度對高畜黑豬屠後背最長肌之μ-calpain 78 kDa 次單位相對含量之變化 47
圖10、影像分析貯存溫度對高畜黑豬屠後背最長肌之μ-calpain 76kDa 次單位相對含量之變化 48
圖11、高畜黑豬屠後背最長肌貯存於5℃及25℃對完整desmin降解之影響 50
圖12、影像分析貯存溫度對高畜黑豬背最長肌完整desmin量之相對降解變化 51

表一、骨骼肌中主要之Cathepsins種類 24


周榮吉、陳明造、林慶文。1993。食肉的低溫熟成。科學農業41 (9,10):203-208。
何思嫻。2004。乳酸鈣浸漬對水禽屠後平滑肌、骨骼肌及心肌肌原纖維蛋白質水解之影響。國立嘉義大學碩士論文。
張雅琇。2010。高畜黑豬屠後骨骼肌calpain及肌原纖維蛋白質之降解。國立嘉義大學碩士論文。
Allen, R. E., and D. E. Goll. 2003. Cellular and developmental biology of skeletal muscle as related to muscle growth. Pages 148-169 in Biology of Growth of Domestic Animals, ed. by Scanes, C. G., Iowa State Press, Ames, IA.
Anderson, M. J., S. M. Lonergan, and E. Huff-Lonergan. 2012. Myosin light chain 1 release from myofibrillar fraction during postmortem aging is a potential indicator of proteolysis and tenderness of beef. Meat Sci. 90:345-351.
Aoki, K., S. Imajoh, S. Ohno, Y. Emori, M. Koike, G. Kosaki, and K. Suzuki. 1986. Complete amino acid sequence of the large subunit of the low-Ca2+-requiring form of human Ca2+-activated neutral protease (mCANP) deduced from its cDNA sequence. FEBS Lett. 205:313-317.
Bandman, E., and D. Zdanis. 1988. An immunological method to assess protein degradation in post-mortem muscle. Meat Sci. 22:1-19.
Barnier, V. M. H. 1995. Determinants and predictors of beef tenderness. PhD thesis. University of Utrech, The Netherlands.
Baron, C. P., S. Jacobsen, and P. P. Purslow. 2004. Cleavage of desmin by cysteine proteases: Calpains and cathepsin B. Meat Sci. 68:447-456.
Bee, G., A. L. Anderson, S. M. Lonergan, and E. Huff-Lonergan. 2007. Rate and extent of pH decline affect proteolysis of cytoskeletal proteins and water-holding capacity in pork. Meat Sci. 76:359-365.
Bennett, P. M., and M. Gautel. 1996. Titin domain patterns correlate with the axial disposition of myosin at the end of the thick filament. J. Mol. Biol. 259:896-903.
Boehm, M. L., T. L. Kendall, V. F. Thompson, and D. E. Goll. 1998. Changes in the calpains and calpastatin during postmortem storage of bovine muscle. J. Anim. Sci. 76:2415-2434.
Bond, J. J., and R. D. Warner. 2007. Ion distribution and protein proteolysis affect water holding capacity of longissimus thoracis et lumborum in meat of lamb subjected to antemortem exercise. Meat Sci. 75:406-414.
Brooks, G. A. 2002. Lactate shuttles in Nature. Biochem Soc. Trans. 30:258-264.
Brown, N., and C. Crawford. 1993. Structural modifications associated with the change in Ca2+ sensitivity on activation of m-calpain. FEBS. Lett. 322:65-68.
Buja L. M., H. K. Hagler, and J. T. Willerson. 1988. Altered calcium homeostasis in the pathogenesis of myocardial ischemic and hypoxic injury. Cell Calcium 9:205-217.
Buja, L. M. 1991. Lipid abnormalities in myocardial cell injury. Trends Cardiovasc. Med. 1: 40-45.
Busch, W. A., M. H. Stromer, D. E. Goll, and A. Suzuki. 1972. Ca2+-specific removal of Z-lines from rabbit skeletal muscle. J. Cell Biol. 52:67-381.
Calkins, C. R., and S. C. Seidman. 1988. Relationship among calcium-dependent protease, cathepsin B and H, meat tenderness and the response of muscle to aging. J. Amin. Sci. 66:1186-1193.
Camou, J. P., J. A. Marchello, V. F. Thompson, S. W. Mares, and D. E. Goll. 2007. Effect of postmortem storage on activity of μ- and m-calpain in five bovine muscles. J. Anim. Sci. 85:2670-2681.
Carragher, N. O., and M. C. Frame. 2002. Calpain: a role in cell transformation and migration. Int. J. Biochem. Cell Biol. 34:1539-1543.
Cha, S. T., T. F. Tseng, S. S. Ho, and R.-G. R. Chou. 2002. Comparison of postmortem proteolysis between breast and leg muscles in Chiayi native chickens. Asian-Aust. J. Anim. Sci. 15:21-724.
Chou, R.-G. R., T.-F. Tseng, K.-J. Lin, and J. H. Yang. 1994. Postmortem changes in myofibrillar proteins of breast and leg muscles from broilers, spent hens and Taiwanese Country Chickens. J. Sci. Food Agric. 65:297-302.
Chou, R.-G. R., K. J. Lin, and T. F. Tseng. 1996. Post-mortem changes in breast muscles of mule duck. J. Sci. Food Agric. 71:99-102.
Christensen, M., P. Henckel, and P. P. Purslow. 2004. Effect of muscle type on the rate of post-mortem proteolysis in pigs. Meat Sci. 66:595-601.
Claeys, E., S. D. Smet, D. Demeyer, R. Geers, and N. Buys. 2001. Effect of rate of pH decline on muscle enzyme activities in two pig lines. Meat Sci. 57:257-263.
Clark, K. A., A. S. McElhinny, M. C. Beckerle, and C. C. Gregorio. 2002. Striated muscle cytoarchitecture: an intricate web of form and function. Annu. Rev. Cell Dev. Biol. 18: 637-706.
Coux, O., K. Tanaka, and A. Goldberg. 1996. Structure and function of the 20S and 26S proteasomes. Ann. Rev. Biochem. 65:801-847.
Croall, D. E., and K. S. McGrody. 1994. Domain structure of calpain: mapping the binding site for calpastatin. Biochemistry. 33: 13223-13230.
Croall, D. E., K. Moffett, and H. Hatch. 2002. Casein zymography of calpains using a 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid imidazole buffer. Anal. Biochem. 304:129-132.
Cullen, M. J., J. J. Fulthorpe, and J. B. Harris. 1992. The distribution of desmin and titin in normal and dystrophic muscle. Acta Neuropathol. 83:158-169.
Dahlmann, B., T. Ruppert, L. Kuehn, S. Merforth, and P. M. Kloetzel. 2000. Different proteasome subtypes in a single tissue exhibit different enzymatic properties. J. Mol. Biol. 303(5):643-653.
Dahlmann, B., T. Ruppert, P. M. Kloetzel, and L. Kuehn. 2001. Subtypes of 20S proteasomes from skeletal muscle. Biochimie. 83:295-299.
Dargelos, E., C. Brulé, L. Combaret, A. H. Sassi, S. Dulong, S. Poussard, and P. Cottin. 2007. Involvement of the calcium-dependent proteolytic system in skeletal muscle aging. Exp. Gerontol. 42:1088-1098.
Da Silva, A. C. R., and F. C. Reinach. 1991. Calcium binding induces conformational changes in muscle regulatory proteins. TIBS 16:53-57.
Dayton, W. R., D. E. Goll, M. G. Zeece, R. M. Robson, and W. J. Reville. 1976. A Ca++-activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle. Biochemistry. 15: 2150.
Dennis, S. C., W. Gevers, W. Gevers, and L. H. Opie. 1991. Protons in ischemia: Where do they come from; where do they go to? J. Mol. Cell Cardiol. 23:1077-1086.
De Duve, C., B. C. Pressman. R. Gianetto, R. Wattiaux, and F. Appelmans. 1955. Tissue fractionation studies 6. Intracellular distribution pattern of enzymes in rat-liver tissue. J. Biol Chem. 60:604-617.
Du, J., X. Wang, C. Miereles, J. L. Bailey, R. Debigare, B. Zheng, S. R. Price, and W. E. Mitch. 2004. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J. Clinic. Invest. 113:115-123.
Ducasting, A., C. Valin, J. Schollmeyer, and R. Cross. 1985. Effects of electrical stimulation on post-mortem changes in the activities of two Ca dependent neutral proteinases and their inhibitor in beef muscle. Meat Sci. 15:193-202.
Dutaud, D., R. G. Taylor, B. Picard, and A. Ouali. 1996. Le protéasome: Une nouvelle protéase impliquée dans la maturation de la viande. Viandes Prod. Carnés. 17:333-335.
Dutaud, D. 1998. Quantification et caractérisation du protéasome 20S de muscle de bovin en relation avec l'attendrissage de la viande bovine. PhD thesis, Blaise Pascal University, Clermont-Ferrand, France.
Earnshaw, W. C., L. M. Martins, and S. H. Kaufmann. 1999. Mammalian caspases structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68:383-424.
Emori, Y., H. Kawasaki, S. Imajoh, S. Kawashima, and K. Suzuki. 1986. Isolation and sequence analysis of cDNA clones for the small subunit of rabbit calcium-dependent protease. J. Biol. Chem. 261:472-9476.
Ertbjerg, P., M. M. Mielche, L. M. Larsen, and A. J. Møller. 1999. Relationship between proteolytic changes and tenderness in prerigor lactic acid marinated beef. J. Sci. Food Agric. 79:970-978.
Etherington, D. J. 1984. The contribution of proteolytic enzymes to postmortem changes in muscle. J. Anim. Sci. 59:1644-1650.
Etherington, D. J., M. A. J. Taylor, and E. Dransfield. 1987. Conditioning of meat from different species. Relationship between tenderising and the levels of cathepsin B, cathepsin L, calpain I, calpain II and β-glucuronidase. Meat Sci. 20:1-18.
Etherington, D. J., M. A. J. Taylor, D. K. Wakefield, A. Cousins, and E. Dransfield. 1990. Proteinase (cathepsin B, D, L and calpains) levels and conditioning rates in normal, electrically stimulated and high-ultimate pH chicken muscle. Meat Sci. 28:99-109.
Farouk, M. M., and J. E. Swan. 1997. Acceptability and functional properties of restructured roast from frozen pre-rigor injected beef. Meat Sci. 46:57-66.
Foucrier, J., Y. Bassaglia, M. C. Grande, B. Rothen, J. C. Perriard, and K. Scherrer. 2001. Prosomes from sarcomere-like banding patterns in skeletal, cardiac, and smooth muscle cells. Exp. Cell Res. 266:193-200.
Friz, J. D., and M. L. Greaser. 1991. Changes in titin and nebulin in postmortem bovine muscle revealed by gel electrophoresis, Western blotting and immunofluorescence microscopy. J. Food Sci. 56:607-610.
Fuentes-Prior, P., and G. S. Salvesen. 2004. The protein structures that shape caspase-activity, specificity, activation, and inhibition. J. Biochem. 384:201-232.
Geesink, G. H., and M. Koohmaraie. 1999. Effect of calpastatin on degradation of myofibrillar proteins by µ-calpain under postmortem conditions. J. Anim. Sci. 77:2685-2692.
Geesink, G. H., and M. Koohmaraie. 2000. Ionic strength-induced inactivation of μ-calpain in postmortem muscle. J. Anim. Sci. 78:2336-2343.
Geesink, G. H., A.-D. Bekhit, and R. Bickerstaffe. 2000. Rigor temperature and meat quality characteristics of lamb longissimus muscle. J. Anim. Sci. 78:2842-2848.
Geesink, G. H., S. Kuchay, A. H. Chishti, and M. Koohmaraie. 2006. µ-Calpain is essential for postmortem proteolysis of muscle proteins. J. Anim. Sci. 84:2834-2840.
Gil-Parrado, S., O. Popp, T. A. Knoch, T. A. Zahler, F. Bestvater, M. Felgenträger, A. Holloschi, A. Fernández-Montalaván, E. Auerswald, H. Fritz, P. Fluentes-Prior, W. Machleidt, and E. Spiess. 2003. Subcellular localization and in vivo subunit interactions of ubiquitous μ-calpain. J. Biol. Chem. 278:16336-16346.
Goll, D. E., R. B. Young, and M. H. Stromer. 1974. Separation of subcellular organelles by differential and density gradient centrifugation. Recip. Meat Conf. Proc. 27:250-255.
Goll, D. E., Y. Otsuka, P. A. Nagainis, J. D. Shannon, S. K. Sathe, and M. Muguruma. 1983. Role of muscle proteinases in maintenance of muscle integrity and mass. J. Food Biochem. 7:137-141.
Goll, D. E. 1991. Role of proteinases and protein turnover in muscle growth and meat quality. 44th Proceeding of Reciprocal Meat Conference, Manhattan, KS, American Meat Science Association. 44:25-33.
Goll, D. E., W. R. Dayton, I. Singh, and R. M. Roboson. 1991. Studies of the α-actinin/actin interaction in the Z-disk by using calpain. J. Biol. Chem. 266 : 8501-8510.
Goll, D. E., V. F. Thompson, R. G. Taylor, and J. A. Christiansen. 1992. Role of the calpain system in muscle growth. Biochimie. 74:225-237.
Goll, D. E., M. L. Boehm, G. H. Geesink, and V. F. Thompson. 1997. What causes postmortem meat tenderization? 50th Proceeding of Reciprocal Meat Conference, 50:60-67. Ames, IA, American Meat Science Association.
Grabarek, Z., I. Tao, and J. Gergely. 1992. Molecular mechanism of troponin-C function. J. Muscle Res. Cell. Motil. 13:383-393.
Guignot, F. 1992. Acidification postmortem dans le muscle de veau: bonséquences sur la structure et les qualités organoleptiques de la viande. PhD thesis, Blaise Pascal University, Clermont-Ferrand, France.
Guroff, G. 1964. A neutral, calcium-activated proteinase from the soluble fraction of rat brain. J. Biol. Chem. 239:149.
Harris, S. E., E. Huff-Lonergan, S. M. Lonergan, W. R. Jones, and D. Rankins. 2001. Antioxidant status affects color stability and tenderness of calcium chloride injected beef. J. Anim Sci. 79: 666-677.
Hayashi, M., H. Suzuki, S. Kawashima, T. C. Saido, and M. Inomata. 1999. The behavior of calpain-generated N- and C- termonal fragments of talin in integrin-mediated signaling pathway. Arch. Biochem. Biophys. 371:133-141.
Helman, E. E., E. Huff-Lonergan, G. M. Davenport, and S. M. Lonergan. 2003. Effect of dietary protein on calpastatin in canine skeletal muscle. J. Anim. Sci. 81:2199-2205.
Hengartner, M. O. 2000. The biochemistry of apoptosis. Nature. 407:770-776.
Herrera-Mendez, C. H., S. Becila, A. Boudjellal, and A. Ouali. 2006. Meat ageing: reconsideration of the current concept. Trends Food Sci. Tech.17:394-405.
Hirsch, C., and H. L. Ploegh. 2000. Intracellular targeting of the proteasome. Trends Cell Biol. 10:268-272.
Ho, C.-Y., M. H. Stromer, and R. M. Robson. 1994. Identification of the 30 kDa polypeptide in post mortem skeletal muscle as a degradation product of troponin-T. Biochimie. 76:369-375.
Hopkins, D. L. 2000. The relationship between actomyosin, proteolysis and tenderisation examined using protease inhibitors. PhD thesis, University of New England, Australia.
Hopkins, D. L., and J. M. Thompson. 2002. Factors contributing to proteolysis and disruption of myofibrillar proteins and the impact on tenderisation in beef and sheep meat. Aust. J. Agric. Res. 53:149-166.
Horowits, R., E. S. Kempner, M. E. Bisher, and R. J. Podolsky. 1986. A physiological role for titin and nebulin in skeletal muscle. Nature. 323:160-162.
Hosfield, C. M., J. S. Elce, P. L. Davies, and Z. Jia. 1999. Crystal structure of calpain reveals the structural basis for Ca2+-dependent protease activity and a novel mode of enzyme activation. EMBO J. 18:6880-6889.
Huang, Y. and K. K. Wang. 2001. The calpain family and human disease. Trends Mol. Medicine. 7:355-362.
Huff-Longergan, E., F. C. Parrish Jr, and R. M. Robson. 1995. Effects of postmortem aging time, animal age, and sex on degradation of titin and nebulin in bovine longissimus muscle. J. Anim. Sci. 73:1064-1073.
Huff-Lonergan, E., T. Mitsuhashi, D. D. Beekman, F. C. Parrish, D. G. Olson, and R. M. Robson. 1996. Proteolysis of specific muscle structural proteins by mu-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle. J. Anim. Sci. 74:993-1008.
Huff-Lonergan, E., W. G. Zhang, and S. M. Lonergan. 2010. Biochemistry of postmortem muscle — Lessons on mechanisms of meat tenderization. Meat Sci. 86:184-195.
Hwan, S. F., and E. Bandman. 1989. Studies of desmin and α-actinin degradation in bovine semitendinosus muscle. J. Food Sci. 54:1426-1430.
Hwang , I. H., B. Y. Park, S. H. Cho, and J. M. Lee. 2004. Effects of muscle shortening and proteolysis on Warner–Bratzler shear force in beef longissimus and semitendinosus. Meat Sci. 68:497-505.
Imajoh, S., H. Kawasaki, and K. Suzuki. 1986. The amino-terminal hydrophobic region of the small subunit of calcium-activated neutralprotease (CANP) is essential for its activation by phosphatidylinositol. J. Biochem. 99:1281-1284.
Imajoh, S., K. Aoki, S. Ohno, Y. Emori, H. Kawasaki, H. Sugihara, and K. Suzuki. 1988. Molecular cloning of the cDNA for the large subunit of the high-Ca2+-requiring form of human Ca2+-activated neutral protease. Biochemistry. 27:8122-8128.
Inomata, M., Y. Kasai, M. Nakamura, and S. Kawashima. 1988. Activation mechanism of calcium activated neutral protease. J. Biol. Chem. 263:19783-19787.Jin, J. P., and K. Wang. 1991. Nebulin as a giant actin-binding template protein in skeletal muscle sarcomere: Interaction of actin and cloned human nebulin fragments. FEBS Lett. 281:93-96.
Jeacocke, R. E. 1993. The concentrations of free magnesium and free calcium-ions both increase in skeletal-muscle fibers entering rigor-mortis. Meat Sci. 35:27-45.
Johnson, M. H., C. R.Calkins, R. D.Huffman, D. D. Johnson, and D. D. Hargrove. 1990. Differences in cathepsin B + L and calcium-dependent protease activities among breed type and their relationship to beef tenderness. J. Anim. Sci. 68:2371-2379.
Kemp, C. M., R. G. Bardsley, and T. Parr. 2006. Changes in caspase activity during the postmortem conditioning period and its relationship to shear force in porcine longissimus muscle. J. Anim. Sci. 84:2841-2846
Kemp, C. M., T. Parr, R. G. Bardsley, and P. J. Buttery. 2006.
Comparison of the relative expression of caspase isoforms in different porcine skeletal muscles. Meat Sci. 73:426-431.
Kemp, C. M., and T. Parr. 2008. The effect of recombinant caspase 3 on myofibrillar proteins in porcine skeletal muscle. Animal. 2:1254-1264.
Kemp, C. M., D. A. King, S. D. Shackelford, T. L. Wheeler, and M. Koohmaraie. 2009. The caspase proteolytic system in callipyge and normal lambs in longissimus, semimembranosus, and infraspinatus muscles during postmortem storage. J. Anim. Sci. 87:2943-2951.
Kendall, T. L., M. Koohmaraie, J. R. Arbona, S. E. Williams, and L. L. Young. 1993. Effect of pH and ionic strength on bovine m-calpain and calpastatin activity. J. Anim. Sci. 71:96-104.
Kent, M. P., M. J. Spencer, and M. Koohmaraie. 2004. Postmortem proteolysis is reduced in transgenic mice overexpressing calpastatin. J. Anim. Sci. 82:794-801.
Khorchid, A., and M. Ikura. 2002. How calpain is activated by calcium. Nat. Struct. Biol. 9:239-241.
Kimura, S., Y. Matsuura, S. Ohtsuka, Y. Nakauchi, A. Matsuno, and K. Maruyama. 1992. Characterization and localization of alpha-connectin (titin 1): an elastic protein isolated from rabbit skeletal muscle. J. Muscle Res. Cell Motil. 13:39-47.
Koike, T., S. Tanaka, T. Oda, and T. Ninomiya. 2000. Sodium overload through voltage-dependent Na+ channels induces necrosis and apoptosis of rat superior cervical ganglion cells in vitro. Brain Res. Bull. 51:345-355.
Koohmaraie, M., W. H. Kennick, A. F. Anglemier, E. A. Elgasim, and T. K. Jones. 1984a. Effect of postmortem storage on cold shortened bovine muscle: Analysis by SDS-polyacrylamide gel electrophoresis. J. Food Sci. 49:290-291.
Koohmaraie, M., W. H. Kennick, E. A. Elgasim, and A. F. Anglemier. 1984b. Effects of postmortem storage on muscle protein degradation: Analysis by SDS-ployacrylamide gel electrophoresis. J. Food Sci. 49:292-294.
Koohmaraie, M., S. C. Seideman, J. E. Shollmeyer, T. R. Dutson, and A. S. Babiker. 1988. Factors associate with the tenderness of three bovine muscles. J. Food Sci. 53:407-410.
Koohmaraie, M., G. Whipple, D. H. Kretchmar, J. D. Crouse, and H. J. Mersmann. 1991. Postmortem proteolysis in longissimus muscle from beef, lamb and pork carcasses. J. Anim. Sci. 69:617-624.
Koohmaraie, M., and G. H. Geesink. 2006. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci. 74:34-43.
Kos, J., and T. T. Lah. 1998. Cysteine proteinases and their endogenous inhibitors target proteins for prognosis, diagnosis and therapy in cancer. Oncol. Rep. 5(6):1349-1361.
Kristensen, L., and P. P. Purslow. 2001. The effect of ageing on the water-holding capacity of pork: Role of cytoskeletal proteins. Meat Sci. 58:17-23.
Kubo, T., B. Gerelt, G. D. Han, T. Sugiyama, T. Nishiumi, and A. Suzuki. 2002. Changes in immuno electron microscopic localization of cathepsin D in muscle induced by conditioning or high-pressure treatment. Meat Sci. 61:415-418.
Labeit, S., T. Gibson, A. Lakey, K. Leonard, M. Zevani, P. Knight, J. Wardale, and J. Trinick. 1991. Evidence that nebulin is a protein-ruler in muscle thin filaments. FEBS Lett. 282:313-331.
Labeit, S., B. Kolmerer, and W. A. Linke. 1997. The giant protein titin. Emerging roles in physiology and pathophysiology. Circ. Res. 80:290-294.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680-685.
Lametsch, R., P. Roepstorff, and Bendixen, E. 2002. Identification of protein degradation during post-mortem storage of pig meat. J. Food Chem. 50:5508-5512.
Lametsch, R., P. Roepstorff, Moller, H. S., and Bendixen, E. 2004. Identification of myofibrillar substrates for μ-calpain. Meat Sci. 68:515-521.
Levine, R. L. 1993. Ischemia: From acidosis to oxidation. FASEB J. 7:1242-1246.
Li, H., V. F. Thompson, and D. E. Goll. 2004. Effect of autolysis on properties of μ- and m-calpain. Biochim. Biophys. Acta. 1691:91-103.
Li, S. H., X. Q. Zhou, N. Zhang, H. Liu, and C. W. Ma. 2008. Purification and characterisation of cathepsin L2 from dorsal muscle of silver carp. Food Chem. 111:879-886.
Lonergan, S. M., E. Huff-Lonergan, B. R. Wiegand, and L. A. Kriese-Anderson. 2001. Postmortem proteolysis and tenderization of top loin steaks from brangus cattle. J. Muscle Foods. 12: 121-136.
Loo, D. T., S. B. Kanner, and A. Aruffo. 1998. Filamin binds to the cytoplasmic domain of the beta1-integrin. J. Biol. Chem. 273: 23304.
Löwe, J., D. Stock, B. Jap, P. Zwickl, W. Baumeister, and R. Huber. 1995. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science. 268:533-539.
Maddock, K. R., E. Huff-Lonergan, L. J. Rowe, and S. M. Lonergan. 2005. Effect of pH and ionic strength on µ-and m-calpain inhibition by calpastatin. J. Anim. Sci. 83:1370-1376.
Maddock, K. R., E. Huff-Lonergan, L. J. Rowe, and S. M. Lonergan. 2006. Effect of oxidation, pH, and ionic strength on calpastatin inhibition of µ-and m-calpain. J. Anim. Sci. 84:925-937.
Maki, M., S. Narayana, and K. Hitomi. 1997. A growing family of the Ca2+-binding proteins with five EF-hand motifs. J. Biochem. 328:718-720.
Maruyama, K. 1997. Connectin/titin, giant elastic protein of muscle. FASEB J. 11:341-345.
Matsukura, U., A. Okitani, T. Nishimure, and H. Kato. 1981. Mode of degradation of myofibrillar proteins by an endogenous protease, cathepsin L. Biochim. Biophys. Acta. 662:41-47.
Matsumota, T., A. Okitani, Y. Kitamura, and H. Kato. 1983. Mode of degradation of myofibrillar proteins by rabbit muscle cathepsin D. Biochim. Biophys. Acta. 755:76-80.
McCormick, R. J. 2009. Collagen. Pages 129-148 in Applied Muscle Biology and Meat Science, eds. by M. Du and R. J. McCormick, CRC Press, London, UK.
Melloni, E. and S. Pontremoli. 1989. The calpains. Trends Neurosci. 12:438-444.
Melloni, E., and S. Pontremoli. 1991. The calpain-calpastatin system: Structaral and functional properties. J. Nutr. Biochem. 2:467-475.
Melloni, E., and S. Pontremoli. 1992. The calpain-calpastatin system : structural and functional properties. Biochimie. 74: 217-223.
Melloni, E., M. Michetti, F. Salamino, R. Minafra, and S. Pontremoli. 1996. Modulation of the Calpain Autoproteolysis by Calpastatin and Phospholipids. Biochem. Biophys. Res. Commun. 229:193-197.
Mellstrom, B., and J. R. Naranjo. 2001. Mechanisms of Ca2+-dependent transcription. Curr. Opin. Neurobiol. 11:312-319.
Melody, J. L., S. M. Lonergan, L. J. Rowe, T. W. Huiatt, M. S. Mayes, and E. Huff-Lonergan. 2004. Early postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles. J. Anim. Sci. 82:1195-1205.
Moeller, P. W., P. A. Field, T. R. Dutson, W. A. Landmann, and Z. L. Carpenter. 1977. High temperature effects on lysosomal enzymes distribution and fragmentation of bovine muscle. J. Food Sci. 42:510-512.
Mohrhauser, D. A., K. R. Underwood, and A. D. Weaver. 2011.
In vitro degradation of bovine myofibrils is caused by μ- calpain, not caspase-3. J. Anim. Sci. 89:798-808.
Molinari, M., and E. Carafoli. 1997. Calpain: A Cytosolic Proteinase Active at the Membranes. J. Membr. Biol. 156:1-8.
Morrison, E. H., M. M. Mielche, and P. P. Purslow. 1998. Immunolocalisation of intermediate filament proteins in porcine meat. Fibre type and muscle-specific variations during conditioning. Meat Sci. 50: 91-104.
Morrison, E. H., H. A. Bremner, and P. P. Purslow. 2000. Location of and post-mortem changes in some cytoskeletal proteins in pork and cod muscle. J. Sci. Food Agric. 80:691-697.
Muguruma, M., S. Nishimuta, Y. Tomisaka, T. Ito, and S. Matsumura. 1996. Organization of the functional domains in membrane cytoskeletal protein talin. J. Biochem. 117:1036-1042.
Muroya, S., M. Ohnishi-Kameyama, M. Oe, I. Nakajima, and K. Chikuni. 2007. Postmortem changes in bovine troponin-T isoforms on two-dimensional electrophoretic gel analyzed using mass spectrometry and western blotting: The limited fragmentation into basic poly peptides. Meat Sci. 75:506-514.
Noda, T., K. Isogai, H. Hayashi, and N. Katunuma. 1981. Susceptibilities of various myofibrillar proteins to cathepsin B and morphological alteration of isolated myofibrils by this enzyme. J. Biochem. 90:371-379.
O’Halloran, G. R., D. J. Troy, D. J. Buckley, and W. J. Reville. 1997. The role of endogenous proteases in the tenderisation of fast glycolysing muscle. Meat Sci. 47:187-210.
Ohno, S., Y. Emori, and S. Suzuki. 1986. Nucleotide sequence of a cDNA coding for the small subunit of human calcium-dependent protease. Nucleic Acids. Res. 14:55-59.
Ohno, S., S. Minoshima, J. Kudoh, R. Fukuyama, Y. Shimizu, S. Ohmi-Imajoh, N. Shimizu, and K. Suzuki. 1990. Four genes for the calpain family locate on four distinct human chromosomes. Cytogenet. Cell Genet. 33:225-229.
Olivé, M, J. Armstrong, F. Miralles, A. Pou, M. Francesca, L. Gonzalez, F. Martinez, D. Fischer, J. A. M. Matos, A. Shatunov, L. Goldfarb, and I. Ferrer. 2007. Phenotypic patterns of desminopathy associated with three novel mutations in the desmin gene. Neuromuscul. Disord. 17:443-450.
Olson, D. G., F. C. Parrish, Jr, and M. H. Stromer. 1976. Myofibril fragmentation and shear resistance of three bovine muscles during postmortem storage. J. Food Sci. 41:1036-1041.
Olson, D. G., and F. C. Parrish, Jr.. 1977. Relationship of myofibril fragmentation index to measures of beef steak tenderness. J. Food Sci. 42:506-509.
Ouali, A. 1999. Structure and biochemistry of muscle as related to meat texture. Proc. 14th European Symposium on the Quality of Poultry Meat, Bologna, 1:91-121.
Panaviene, Z., X. A. Denga, M. Eshama, and C. L. Moncman. 2007. Targeting of nebulin fragments to the cardiac sarcomere. Exp. Cell Res. 313:896-909.
Pardo, J. V., J. D. Siliciano, and S. W. Craig. 1983. A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (“costameres”) mark sites of attachment between myofibers and sarcolemma. Proc. Natl. Acad. Sci. U. S. A.. 80:1008-1012.
Parrish, Jr., F. C., R. G. Young, B. E. Miner, and L. D. Anderson. 2006. Effect of postmortem conditions on certain chemical, morphological, and organoleptic propertiec of bovine muscle. J. Food Sci. 38:690-695.
Penny, I. F. 1976. Effect of conditioning on myofibrillar proteins of pork muscle. J. Food Sci. 27:1147-1155.
Pomponio, L., P. Ertbjerg, A. H. Karlsson, L. N. Costa, and R. Lametsch. 2010. Influence of early pH decline on calpain activity in porcine muscle. Meat Sci. 86:184-195.
Pomponio, L., and P. Ertbjerg. 2012. The effect of temperature on the activity of μ- and m-calpain and calpastatin during post-mortem storage of porcine longissimus muscle. Meat Sci. 91:50-55.
Raser, K. J., A. Posner, and K. W. Wang. 1995. Casein zymography: A method to study μ-calpain, m-calpain and their inhibitory agents. Arch. Biochem. Biophys. 319:211-216.
Reddy, M. K., J. D. Etlinger, M. Rabinowitz, D. A. Fischman, and R. Zak. 1975. Removal of Z-lines and alpha-actinin from isolated myofibrils by a calcium-activated neutral protease. J. Biol. Chem. 250:4278-4284.
Rees, M. P., G. R. Trout, and R. D. Warner. 2003. The influence of the rate of pH decline on the rate of ageing for pork. II: Interaction with chilling temperature. Meat Sci. 65:805-818.
Reverter, D., H. Sorimachi, and W. Bode. 2001. The structure of calcium-free human m-calpain. Implications for calcium activation and function. Trends. Cardiovasc. Med. 11:222-229.
Richardson, F. L., M. H. Stromer, T. W. Huiatt, and R. M. Robson. 1981. Immunoelectron and fluorescence microscope localization of desmin in mature avian muscles. Eur. J. Cell Biol. 26:91-101.
Rizo, J., and T. C. Südhof. 1998. C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273:15879-15882.
Robson, R. M. 1989. Intermediate filaments. Curr. Opin. Cell Biol. 1:36-43.
Robson, R. M., D. E. Goll, and M. J. Temple. 1968. Determination of protein in “Tris” buffer by the biuret reaction. Anal. Biochem. 24:339-341.
Robson, R. M., J. M. O’Shea, and M. K. Hartzer. 1984. Role of new cytoskeletal elements in maintenance of muscle integrity. J. Food Biochem. 8:1-24.
Robson, R. M., T. W. Huiatt, and F. C. Parrish. Jr. 1991. Biochemical and structural properties of titin, nebulin and intermediate filaments in muscle. 44th Proceeding of Reciprocal Meat Conference, 44:7-20. Manhattan, KS, American Meat Science Association.
Robson, R. M., E. Huff-Lonergan, F. C. Parrish, C.-Y. Ho, M. H. Stromer, T. W. Huiatt, R. M. Bellin, and S. W. Sernett. 1997. Postmortem changes in the myofibrillar and other cytoskeletal proteins in muscle. Recip. Meat Conf. Proc. 50:43-52.
Root, D. D., and K. Wang. 1994. Calmodulin-sensitive interaction of human nebulin fragments with actin and myosin. Biochemistry. 33:12581-12591.
Rosenvold, K., U. Borup, and M. Therkildsen. 2010. Stepwise chilling - Tender pork without compromising water-holding capacity. J. Anim. Sci. 88:1830-1841.
Rowe, L. J., K. R. Maddock, A. Trenkle, S. M. Lonergan, and E. Huff-Lonergan. 2003. Effects of oxidation on beef tenderness and calpain activity. J. Anim. Sci. 81:74.
Rowe, L. J., K. R. Maddock, S. M. Lonergan, and E. Huff-Longergan. 2004. Oxidative environments decrease tenderization of beef steaks through inactivation of µ-calpain. J. Anim. Sci. 82:3254-3266.
Samejima, K., and F. H. Wolfe. 1976. Degradation of myofibrillar protein components during post-mortem aging of chicken muscle. J. Food Sci. 41:250-254.
SAS Institute Inc. 2004. SAS®9.1.2Qualification tools user’s guide, Cary, NC: SAS Institute Inc..
Schwartz, W. N., and J. W. C. Bird. 1977. Degradation of myofibrillar proteins by cathepsins B and D. Biochem. J. 167:811-820.
Seemuller, E., A. Lupas, D. Stock, J. Lowe, R. Huber, and W. Baumeister. 1995. Proteasome from thermoplasm: A acidophiluma threonine protease. Science. 268:579-592.
Sentandreu, M. A., G. Coulis, and A. Ouali. 2002. Role of muscle endopeptidases and their inhibitors in meat tenderness. Trends Food Sci. Technol. 13:398-419.
Sorimachi, H. S., S. Imajoh-Ohmi, Y. Emori, H. Kawasaki, S. Ohno, Y. Minami, and K. Suzuki. 1989. Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and μ-types. J. Biol. Chem. 264:20106-20111.
Sorimachi, H., and K. Suzuki. 2001. The structure of calpain. J. Biol chem.129:653-664.
Spencer, M. J., D. E. Croall, and J. G. Tidball. 1995. Calpains are activated in necrotic fibers from mdxdystrophic mice. J. Biol chem. 270:10909-10914.
Strasser, P., M. Gimona, M. Herzog, B. Geiger, and J. V. Small. 1993. Variable and constant regions in the C-terminus of vinculin and metavinculin. FEBS Lett. 317:189-194.
Strobl, S., C. Fernandez-Catalan, M. Braun, R. Huber, H. Masumoto, K. Nakagawa, A. Irie, H. Sorimachi, G. Bourenkow, H. Bartunik, K. Suzuki, and W. Bode. 2000. The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc. Natl. Acad. Sci. U. S. A.. 97:588-592.
Stromer, M. H., D. E. Goll, W. J. Reville, D. G. Olson, W. R. Dayton, and R. M. Robson. 1974. Structural changes in muscle during postmortem storage. In: Proc. fouth International Congress on Food Science and Technology, Vol 1, Pages 401-408. Institute de Agroquimica y Tecnologia de Alimentos, Jaime Roig, II, Valencia-10, Spain.
Stromer, M. H. 1990. Intermediate filaments (10 nm) in muscle. Pages 19-36 in Cellular and Molecular Biology of Intermediate Filaments, eds. by R. D. Goldman and P. M. Steinert, Plenum Publishing Corp., New York, NY.
Suzuki, A., and D. E. Goll. 1974. Quantitative assay for CASF (Ca2+-activated sarcoplasmic factor) activity, and effect of CASF treatment on ATPase activities of rabbit myofibeils. Agric. Biol. Chem. 38:2167-2176.
Suzuki, K., S. Imajoh, Y. Emori, H. Kawasaki, Y. Minami, and S. Ohno. 1987. Calcium-activated neutral protease and its endogenous inhibitor: Activation at the cell membrane and biological function. FEBS Lett. 220:271-277.
Suzuki, K., and S. Ohno. 1990. Calcium activated neutral protease-structure-function relationship and functional implications. Cell Struct. Funct. 15:1-6.
Suzuki, K., S. Hata, Y. Kawabata, and H. Sorimachi. 2004. Structure, activation, and biology of calpain. Diabetes 53(1):S12-S18.
Taylor, R. G., G. H. Geesink, V. F. Thompson, M. Koohmaraie, and D. E. Goll. 1995. Is Z-disk degradation responsible for postmortem tenderization? J. Anim. Sci. 73:1351-1367.
Taylor, R. G., and M. Koohmaraie. 1998. Effects of postmortem storage on the ultrastructure of the endomysium and myofibrils in normal and callipyge longissimus. J. Anim. Sci. 76:2811-2817.
Thandroyen, F. T., D. Bellotto, A. Katayama, H. K. Hagler, J. T. Willerson, and L.M. Buja. 1992. Subcellular electrolyte alterations during hypoxia and following reoxygenation in isolated rat ventricular myocytes. Circ. Res. 71:106-119.
Thompson, T. G., Y. M. Chan, A. A. Hack, M. Brosius, and M. Rajala. 2000. Filamin 2(fln2): A muscle-specific sarcoglycan interacting protein. J. Cell Biol.148:115.
Thomson, K. L., G. E. Gardner, N. Simmons and J. M. Thompson. 2008.
Length of exposure to high post-rigor temperatures affect the tenderisation of the beef M. longissmus dorsi. Aust. J. Exp. Agric. 48:1442-1450.
Tomaszewska-Gras, J., K. Jacek, and J. G. S. Franciscus. 2002. Quantitative determination of titin and nebulin in poultry meat by SDS-PAGE with an internal standard. Meat Sci. 62:61-66.
Tompa, P., Y. Emori, H. Sorimachi, K. Suzuki, and P. Friedrich. 2001. Domain III of calpain is a Ca2+-regulated phospholipids-binding domain. Biochem. Biophys. Res. Commun. 280:1333-1339.
Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheet: Procedure and some application. Proc. Natl. Acad. Sci. 76:4350-4354.
Underwood, K. R., W. J. Means, and M. Du. 2008. Caspase 3 is not likely involved in the postmortem tenderization of beef muscle. J. Anim. Sci. 86:960-966.
Uytterhaegen, L., E. Claeys, and D. Demeyer, 1994. Effects of exogenous protease ffectors on beef tenderness development and myofibrillar degradation and solubility. J. Anim. Sci. 72:1209-1223.
Van der Flier, A., I. Kuikman, D. Kramer, D. Geerts, and M. Kreft. 2002. Different splice variants of filamin-B affect myogenesis, subcellular distribution, and determine binding to integrin subunits. J. Cell Biol. 156:361.
Verrez-Bagnis, V., J. Noel, C. Sautereau, and J. Fleurence. 1999. Desmin degradation in postmortem fish muscle. J. Food Sci. 64:240-242.
Vidalenc, P., P. Cottin. N. Merdaci, and A. Ducastaing. 1983. Stability of two Ca2+-dependent neutral proteinases and their specific inhibitor during postmortem storage of rabbit skeletal muscle. J. Sci. Food Agric. 34:1241.
Wang, K., J. McClure, and A. Tu. 1979. Titin: Major Myofibrillar Components of Striated Muscle. Proc. Natl. Acad. Sci. U. S. A.. 76:3698-3702.
Wang, S. M., M. L. Greaser, E. Schultz, J. C. Bulinski, J. C. J. Lin, and J. L. Lessard. 1988. Studies on cardiac myofibrillogenesis with antibodies to titin, actin, tropomyosin, and myosin. J. Cell Biol. 107:1075-1083.
Wang, J. H., and S. T. Jiang. 1991. Properties of calpain II from Tilapia muscle (Tilapia nilotica × Tilapia aurea). Agric. Biol. Chem. 55:339-345.
Weaver, A. D., B. C. Bowker, and D. E. Gerrard. 2008. Sarcomere length influences postmortem proteolysis of excised bovine semitendinosus muscle. J. Anim. Sci. 86:1925-1932.
Weaver, A. D., L. Jouault, , B. C. Bowker, A. L. Grant, and D. E. Gerrard. 2007. Sarcomeric thick and thin filament overlap influences postmortem proteolysis. J. Anim. Sci. 85:81-81.
Weller, P. A., E. P. Ogryzko, E. B. Corben, N. I. Zhidkova, B. Patel, G. J. Price, N. K. Spurr, V. E. Koteliansky, and D. R. Critchley. 1990. Complete sequence of human vinculin and assignment of the gene to chromosome-10. Proc. Natl. Acad. Sci. U. S. A.. 87:5667-5671.
Wheeler, T. L., J. D. Crouse, and M. Koohmaraie, 1992. The effect of postmortem time of injection and freezing on the effectiveness of calcium chloride for improving beef tenderness. J. Anim. Sci. 70: 3451-3457.
Wheeler, T. L., S. D. Shackelford, and M. Koohmaraie. 2000. Variation in proteolysis, sarcomere length, collagen content, and tenderness among major pork muscles. J. Anim. Sci. 78:958-965.
Whipple, G., and M. Koohmarale. 1992. Effect of lamb age: Muscle type, and 24 hour activity of endogenous proteinases on postmortem proteolysis. J. Anim. Sci. 70:708-804.
White, A., A. O’Sullivan, D. J. Troy, and E. E. O’Neill. 2006a. Manipulation of the pre-rigor glycolytic behaviour of bovine
M. longissimus dorsi in order to identify causes of inconsistencies
in tenderness. Meat Sci. 73:151-156.
White, A., A. O’Sullivan, E. E. O’Neill, and D. J. Troy. 2006b. Manipulation of the pre-rigor phase to investigate the significance of proteolysis and sarcomere length in determining the tenderness of bovine M. longissimus dorsi. Meat Sci. 73:204-208.
Winkler, J., H. Lünsdorf, and B. M. Jockusch. 2004. Energy-filtered electron microscopy reveals that talin is a highly flexible protein composed of a series of globular domains. Eur. J. Biochem. 243: 430-436
Xie, X., M. D. Dwyer, L. Swenson, M. H. Parker, and M. C. Botfield. 2001. Crystal structure of calcium-free human sorcin: A member of the penta-EF-hand protein family. Protein Sci. 10:2419-2425.
Yamamoto, S. A. Suzuki, and T. Nishiumi. 2009. Stability of proteasomes extracted from pressurized aged skeletal muscle. Asian-Aust. J. Anim. Sci. 22:282-288.
Young, P., C. Ferguson, S. Banuelos, and M. Gautel. 1998. Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of α-actinin. EMBO J. 17:1614-1624.
Zhang, W.G., S. M. Lonergan, M. A. Gardner, and E. Huff-Lonergan. 2006. Contribution of postmortem changes of integrin, desmin and μ-calpain to variation in water holding capacity of pork. Meat Sci. 74:578-585.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔