跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/23 06:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許家偉
論文名稱:氯化鈉溶液對數種原生植物插穗發根之影響
論文名稱(外文):Effect of NaCl solutions on rooting in some native plant cuttings
指導教授:蔡智賢蔡智賢引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:園藝學系研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
畢業學年度:100
語文別:中文
中文關鍵詞:氯化鈉扦插原生植物IBA硝酸鈣
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臺灣西部沿岸海水倒灌、地層下陷而土壤鹽化,植物生長困難。本試驗以0%氯化鈉處理為對照組,觀察10種濃度的氯化鈉 (0.1%-3%) 對海馬齒 (Sesuvium portulacastrum L.)、鯽魚膽 (Pluchea indica L.)、苦檻藍 (Myoporum bontioides A. Gray)、臭娘子 (Premna corymbosa Rottle. & Willd.)、杜虹花 (Callicarpa formosana Rolfe)、疏花紫珠 (Callicarpa remotiflora Lin & J.L.Wang)、枯里珍 (Antidesma pentandrum Meer.)、臺東石楠 (Photinia serratifolia (Desf.) Kalkman)、椬梧 (Elaeagnus oldhamii Maxim.)、臺東莢蒾 (Viburnum taitoense Hayata)、九芎 (Largerstoemia subcostata Koehne) 共11種原生植物之插穗發根率的影響。試驗結果除海馬齒、苦檻藍、鯽魚膽的插穗外,在高於0.3%氯化鈉溶液中,其他八種植物的插穗無法發根。為改善鹽逆境下的插穗發根率,選擇苦檻藍為對照組及枯里珍為材料。以0、1000、3000和6000 ppm的IBA處理後,扦插於6種不同濃度的氯化鈉 (0%-3%) 溶液,調查其發根率與根數。結果顯示,1000和3000 ppm IBA處理下,枯里珍插穗在0.1%氯化鈉溶液中的發根率顯著高於對照組;苦檻藍在0.3%氯化鈉溶液中,經IBA處理的插穗發根率均較對照組高且以1000 ppm IBA處理具顯著差異。1000 ppm的IBA處理後再加入5 mM Ca(NO3)2於五種不同濃度氯化鈉 (0%-3%)溶液中,探討苦檻藍和枯里珍插穗之影響。在0.5%氯化鈉溶液中枯里珍對照組插穗的發根率為0%,以IBA處理並添加Ca(NO3)2處理組,插穗發根率為56.7%,顯著高於對照組。0.5%和1% 氯化鈉溶液中,苦檻藍插穗於添加Ca(NO3)2處理組和IBA處理並添加 Ca(NO3)2處理組,可增加發根率和根數並且和對照組差異顯著。試驗顯示氯化鈉明顯降低植物的發根率,而1000 ppm IBA處理可分別提高0.1%氯化鈉溶液中枯里珍插穗和0.3%氯化鈉溶液中苦檻藍插穗的發根率;配合添加5 mM Ca(NO3)2,可使扦插在0.5%氯化鈉溶液中枯里珍的插穗和1%氯化鈉溶液中苦檻藍插穗的發根率和發根數顯著提高。
摘要 III
Abstract V
表目錄 VII
圖目錄 VIII
第壹章 前言 1
一、參考文獻 3
第貳章 氯化鈉處理對原生植物插穗發根之影響 4
摘要 4
一、前言 5
二、材料方法 8
(一) 植物材料 8
(二) 試驗方法 9
四、結果 11
五、討論 26
六、Abstract 28
七、參考文獻 29
第参章 鹽逆境下IBA處理和添加硝酸鈣改善苦檻藍及枯里珍插穗之發根 31
一、摘要 31
二、前言 33
三、材料方法 36
(一) IBA處理對插穗發根數和發根率之影響 36
(二) IBA處理後及添加硝酸鈣對插穗發根數和發根率之影響 36
四、結果 40
(一) IBA處理對插穗發根數和發根率之影響 40
(二) IBA處理後及添加硝酸鈣對插穗發根數和發根率之影響 56
五、討論 72
六、Abstract 76
七、參考文獻 78
第肆章 結論 81

王崇安. 2012. 嘉義縣鰲鼓溼地及好美里潟湖生態系植物資源長期監測. 國立嘉義大學園藝學系碩士論文. 嘉義.
沈勇強、劉癸君、林喻東、陳致雄. 2007. 海岸防風林之效益評估. 台灣林業. 33:30-36.
林俊全. 2008. 台灣的十大的理議題. 遠足文化事業股份有限公司. 臺北. 中華民國.
凌千里、林瑞松. 1990. 台灣原生觀賞植物之開發及利用. 台灣省農業試驗所技術服務. 3:18-21.
許博行. 2006. 海岸木麻黃林分易衰老原因之探討.台灣林業 32:40-44.
黃冠瑋. 2009. 作物種子耐鹽性程度之研究. 國立嘉義大學園藝學系碩士論文. 嘉義.
楊宗憲. 2010. 作物幼苗耐鹽性之研究. 國立嘉義大學園藝學系碩士論文. 嘉義.
鄧書麟、何坤益、陳財輝、王志斌、高銘發. 2005. 台灣西海岸防風林造林策略與樹種之選介. 台灣林業 31:62-67.
賴韻如. 2010. 臺灣西部濕地研究如鰲鼓溼地植物葉片解剖構造之研究. 國立嘉義大學園藝學系碩士論文. 嘉義.
戴高興、彭克勤、皮燦輝. 2003. 鈣對植物耐鹽的影響. 中國農學通報 3:97-101.
羅常瑞. 2012. 鹽分逆境對草坪耐鹽性之研究. 國立嘉義大學園藝學系碩士論文. 嘉義. 范貴珠、陳儀真. 2003. 土壤鹽度對苦檻藍扦插苗生長、生長狀態及葉綠素濃度之影響. 臺大實驗林研究報告 17:159-169.
Apse, M. P., and E. Blumwald. 2007. Na+ transport in plants. FEBS Lett. 581:2247-2254.
Beeckman, T., S. Burssens, and D. Inzé. 2001. The peri-cell-cycle in Arabidopsis. J. Expt. Bot. 52:403-411.
Bernstein, L. and H. E. Hayward. 1958. Physiology of slat tolerance. Plant Physiol. 9:25-46.
Blakesley, D., G. D. Weston and J. F. Hall. 1991. The role of endogenious auxin in root initation. Plant Growth Regulat. 10:341-353.
Blum, A., R. Munns, J. B. Passioura, and N.C. Turner. 1996. Genetically engineered plants resistant to soil drying and salt stress: How to interpret osmotic relations? Plant Physiol. 110:1051-1053.
Blumwald E. 2000. Sodium transport and salt tolerance in plants. Cell Biol. 12:431-434.
Cabañero F. J., V. Martinez, and M. Carvajal. Does caclicum determine water uptake under saline conditions in pepper plants, or it is water flux which determines calcium uptake? Plant Sci. 2004:443-450.
Casson S. A. and K. Lindesy. 2003. Genes and signaling in root development. New Phytol. 158:11-38.
Chartzoulakis, K. and, G. Klapaki. 2000. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Hort. 86:247-260.
Chen, S., J. Lia, E. Fritz, S. Wang, and A. Hüttermann. 2002. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. Forest Ecol. Mgt. 168:217-230.
Chen, Z., I. I. Pottosin, T. A. Cuin, A. T. Fuglsang, M. Tester, D. Jha, I. Zepeda-Jazo, M. Zhou, M. G. Palmgren, I. A. Newman, and S. Shabala. 2007. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol. 145:1741-1745.
Cramer, G. R., J. Lynch, A. Läuchli, and E. Epstein. 1987. Influx of Na+,K+,Ca+ into roots of salt-stressed cotton seedlings. Plant Physiol. 83:501-516.
Davies, F. T. and H. T. Hartmann. 1988.The physiological basis of adventitious root formation. Acta Hort. 227:113-120.
De Klerk, G. J., W. V. Der Krieken, and J. C. Dev Jong. 1999. The formation of adventitious root: new concept, new possibilities. In Vitro Cell Dev. Biol. Plant. 35:189-199.
Del Amor, F.M., V. Martinez, and A. Cerdá. 2001. Salt Tolerance of Tomato Plants as affected by stage of plant development. HortScience 36:1260-1263.
Demidchik, V. and F. J. M. Maathuis. 2007. Physiological roles of nonselective action shannels in plant: from salt stress to signaling and development. New Phytol. 175:387-404.
Demidchik, V. and M. Tester. 2002. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol. 128:379-387.
Dolan L., K. Janmaat, V. Willemsen, P. Linstead, S. Poethiq, K. Robert, and B. Scheres. 1993. Cellular organization of the Arabisopsis root. Development 119:71-84.
Dunn, D. E., J. C. Cole, and M. W. Smith. 1996. Positoin of cut, bud retention and auxins influence rooting of Pistacia chinensis. Scientia Hort. 67:105-110.
Epstein E.1961. The essential role of calcium in selsetive cation transport by plant cell. Plant Physiol. 36:437-444.
Epstein, E. 1998. Plant biology: How calcium enhances plant salt tolerance? Science 280:1906-1907.
Erwin, J. E., D. Schwarze, and R. Donahue. 1997. Factors affecting propagation of Clematis by stem cutting. HortTechnology 7:408-410.
Fisarakisa, I., K. Chartzoulakis, and D. Stavrakasc. 2001. Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agr. Water Mgt. 51:13-27.
Geiss, G., Laurent G. and Catherine B. 2009. Advenitious root formation : new insights and perspectives.Annu.Plant Rev. 37:127-156.
Goncalves, J. C., G. Diogo, M. T. Coelho, N. Vidal, and S. Amâncio. 2008. Quanitiation of endogenous levels of IAA, IAAsp and IBA in micro-propagated shoots of hybrid chestnut pre-treated with IBA. In vitro Cell Dev. Biol. Plant 44:412-418.
Gu R., Q. Liu, D. Pei, and X. Jiang. 2004. Understanding saline and osmotic tolerance of Populus euphratica suspended cells. Plant Cell Tissue Cult.78: 261-265.
Guo, X. F., X. Fu, D. Zang, and Y. Ma. 2009. Effect of auxin treatments, cuttings’ collection date and initial characteristics on Paeonia ‘Yang Fei Chu Yu’ cutting propagation. Scientia Hort. 119:177-181.
Horie, T., F. Hauser, and J. I. Schroder. 2009. HKT transport-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Plant Sci. 14:660-668.
Jemâa, E., A. Saïda and B. Sadok. 2011. Impact of indole-3-butyric acid and indole-3-acetic acid on the lateral roots growth of Arabidopsis under salt stress conditions. Aust. J. Agr. Eng. 2:18-24
Kato, M. M., H. Shibaoka, and M. Shimokoriyama. 1978. Anatomical and physiological aspects of developemental processes of adventitious root formation in Azukia cuttings. Plant Cell Physiol.19:393-400.
Kaya, C., H. Kirnak, D. Higgs, and K. Saltali. 2002. Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Scientia Hort. 93:65-74.
Kaya, C., H. Kirnak, D. Higgs, and K. Saltali. 2002. Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Scientia Hort. 93:65-74.
Krisantini, S., M. Johnston., R. R. Williams, and C. Beveridge. 2006. Adventitious root formation in Grevillea (Proteaceae), an Australian native species. Scientia Hort. 107: 171-175.
Lebude, A.V., B. Goldfarb, F. A. Blazich, F. C. Wise, and J. Frampton. 2004. Mist, substrate water potential and cutting water potential influence rooting of stem cuttings of loblolly pine. Tree Physiol. 24:823-831.
Liu, J. and J. K. Zhu. 1998. A calcium sensor homolog required for plant salt tolerance. Science 280:1943-1945.
Lopez, M.V., and S. M. E. Satti. 1996. Calcium and potassium-ehanced growth and yield of tomato under sodium chloride steress. Plant Sci. 114:19-27.
Ludwing-Müller J., A. Vertocnik, and C. D. Town. 2005. Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J. Expt. Bot. 56:2095-2105.
Ludwing-Müller, J. .2009. Molecular basis for the role of auxins in adventitious rooting. p.1-29. In: Niemi K.(ed.). Adventitious Root Formation of Forest Trees and Horticulture Plants-from Genes to Application. Kerala, India.
Munns R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59:651-681.
Muns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25:239-250.
Nedjimi, A., and Y. Daoud. 2009. Ameliorative effect of CaCl2 on growth, membrane permeability and nutrient uptake in Atriplex halimus subsp. schweinfurthii grown at high (NaCl ) salinity. Desalination 249: 163-166.
Nordstrom, A.C., F. A. Jacobs, and L. Eliasson. 1991. Effect of exogenous IAA and IBA on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiol. 96:856–861.
Osmont, K.S., R. Sibout, and C.S. Hardtke. 2007. Hidden branches: developments in root system arichitecture. Plant Biol. 58:93-113.
Puri, S. and F.B. Thompson. 2003. Relationship of water to adventitious rooting in stem cuttings of Populus species. Agrofor. Syst. 58:1-9.
Radić S., M. Prolić, M. Pavlica, and B. Pevalek-Kozlina. 2005. Cytogenetic effects of osmotic stress on the root meristem cells of Centaurea ragusina L. Environ. Expt. 54:213-218.
Ramoliya, P. J. and A. N. Pandey. 2002. Effect of increasing salt concentration on emergence, growth and survival of seedlings of Salvadora oleoides (Salvadoraceae). J. Arid. Environ. 51:121-132.
Rhodes, S., A. Nadolska-Orczyk, and P. J. Rich. 2002. Salinity, osmolytes and compatible solutes, p.181-204. In: A. Läuchli and U. Lüttge (eds.). Salinity: Environment-Plants-Molecule. Kluwer Acaemic Press, Netherlands, Ind.
Rubinigg, M., J. Wenisch, J.Theo, M. Elzenga, and I. Stulen. 2004. NaCl salinity affects lateral root development in Plantago maritime. Funct. Plant Biol. 31:775-780.
Sánchez-Barrena, M. J., M. Martinez-Ripoll, J. K. Zhu, and A. Albert. 2005. The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J. Mol. Biol. 345:1253-1264.
Shi, H., F. J. Quintero, J. M. Pardo and J.-K. Zhu. 2002. The putative plasm membrance Na+/H+ antiporter SOS1 control long-distance Na+ transport in plants. Plant Cell 14:465-477.
Štefančič, M., F. Štampar, R. Veberič, and G. Osterc. 2007. The levels of IAA, IAAsp and some phenolics in cherry rootstock ‘GiSelA 5’ leafy cuttings pretreated with IAA and IBA.Scientia Hort. 112:399-405.
Tang R. J., H. Liu, Y. Bao, Q. D. Lv, L. Yang, and H. X. Zhang. 2010. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol. 74:367-380.
Tuna, A. L., C. Kaya, M. Ashraf, H. Altunlu, I. Yokas, and B. Yagmur. 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ. Expt. Botany 59:173-178.
Voigt, E. L., R. F. Caitano, J. M. Maia, S. L. Ferreira-Silva, C. E. C. de Macêdo, and J. A. G. Silveria. 2009. Involvement of cation channels and NH4+-sensitive K+ transporters in Na+ uptake by cowpea roots under salinity. Biol. Plant 53:764-768
West,G., D. Inzé, and G. T.S. Beemster. 2004. Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol. 135:1050-1058.
White, J. and P. H. Lovell. 1984. The anatomy of root initiation in cuttings of Griselinia littoralis and Griselinia lucida. Ann. Bot. 54:7-20.
Yokoi, S., R. A. Bressan, and P. M. Hasegawa. 2002. Salt Stress Tolerance of Plants. JIRCAS Working Rpt. 25-33.
Zhu, J. K. 2001. Plant salt tolerance. Trends Plant Sci. 6:66-71.
Zhu, J. K. 2007. Plant Salt Stress. Encyclopedia Life Sci. Wily. Ltd.
Zhu, J. K.. 2003. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Bio. 6:441-445.
Ziska, L. H., T. M. Dejong, G. F. Hoffman, and R. M. Mead. 1991. Sodium and chloride distribution in salt-stressed Prunus salicina, a deciduous tree species. Tree Physiol. 8:47-57.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top