跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/17 04:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭書帆
研究生(外文):Shu-Fan Shiau
論文名稱:AB2型雙性超樹枝狀高分子之合成與應用
論文名稱(外文):Synthesis and Application of Amphiphilic Hyperbranched Macromolecules through “AB2” Approach
指導教授:梁孟莊宗原
指導教授(外文):Mong LiangTzong-Yuan Juang
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:應用化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:99
中文關鍵詞:樹枝狀高分子超樹枝狀高分子自發性藍色螢光磁性控制奈米氧化鐵
外文關鍵詞:dendrimerhyperbranched polymerblue fluorescencemagnetic controlFe3O4 nanoparticles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為利用AB2自我聚合反應,合成出外圍官能基為羧基的超樹枝高分子(hyperbranched polymer; HBPs),此AB2單體之A端為胺基,B端為羧酸官能基,透過一步驟聚合以amide bond 鍵結的方式,可成功獲得一系列內部擁有豐富3級胺的水溶性超樹枝狀高分子HBPs,其分子量可控制在5000至10000 g/mole。樹枝狀高分子擁有大量末端官能基、立體球型幾何結構與分子內部孔洞等特性等應用,此HBPs以氮為分歧點的樹枝狀結構更具有自發性的藍色螢光現象(λex:328 nm ; λem:400 nm),不含共軛結構卻有自發性螢光的水溶性高分子,其螢光強度強烈受到pH的影響。此HBPs在中性與鹼性水溶液中的螢光放射強度遠高於酸性溶液,經由調整pH值後其量子產率可達到23 %,相較下生物綠色螢光蛋白的量子產率約在7%。
此外,將奈米氧化鐵粒子與HBPs結合發揮立體分子阻隔效應,在TEM影像觀察下: 未改質的氧化鐵Fe3O4奈米粒子會聚集成尺寸約20 nm以上的顆粒,但以HBPs修飾後形成的Fe3O4/HBPs混成材料,其粒子尺寸可調控到5 nm以下。經由AB2自我聚合反應合成多氫鍵HBPs兼具合成快速、高度水溶性與擁有大量外圍官能基可供改質,結合磁性控制與自發性螢光的性質,在生物影像或藥物、基因載體的應用上將有相當的潛力。

Dendritic polymers such as dendrimers and hyperbranched polymers (HBPs) received much attention in the scientific and industrial communities because of their three-dimensional structure, easily tailored functional periphery, and unique self-assembly properties in solution and bulk state. Our HPs, based on polyester and polyamide with COOH-terminal functionalities, were obtained through a facile self-condensation “AB2” synthesis. A series of water-soluble HBPs with a large number of tertiary amine through AB2 self-condensation were synthesed, revealing the molecular weight range from 5000 to 10,000 g/mole. In this study, a strong blue flurescence emission from COOH-terminated HBPs upon adjusting the pH values were demonstrated. These amphiphilic HBPs possesing tertiary amines are water-soluble and blue fluorescence behavior (at λex: 328 nm; λem: 400 nm), indicated the higher fluorescence quantum yield (23 %) than the bio-green fluorescent protein (7.3 %).
In addition, HBP/Fe3O4 nanohybrids syntheses were prepared by one-step redox process and the form of nanoparticle depended upon the weight ratios and the molecular architecture. Under the TEM images observation, the size of prinstine Fe3O4 nanoparticles were 20 nm, compared with the Fe3O4/HBPs nanohybrids (less than 5 nm). These amphiphilic HPs, with magnetic control and blue fluorescent, are potential useful in cell imaging, nano-carriers, self-assembly systems, and organic/magnetic nanohybrids.

中文摘要............................................................................................ I
Abstract ............................................................................................. II
致謝.................................................................................................... III
目錄.................................................................................................... IV
圖目錄................................................................................................ IX
表目錄................................................................................................ XV
第一章 緒論...................................................................................... 1
1-1前言............................................................................................ 1
1-2樹枝狀高分子............................................................................ 2
1-3樹枝狀高分子的應用................................................................ 3
1-4雙性高分子的自組裝行為........................................................ 4
1-5樹枝狀高分子的螢光現象........................................................ 6
1-6研究方法.................................................................................... 7
第二章 文獻回顧.............................................................................. 8
2-1樹枝狀高分子的發展................................................................ 8
2-1.1商業化PAMAM樹枝狀高分子........................................... 9
2-1.2規則樹枝狀高分子的合成策略與優勢............................... 13
2-1.3超樹枝狀高分子的合成策略與優勢................................... 15
2-1.4分歧度(degree of branch, DB)的計算.................................. 17
2-2樹枝狀高分子的應用................................................................ 19
2-2.1藥物與基因載體的應用....................................................... 19
2-2.2光學材料的應用................................................................... 22
2-2.3自組裝奈米材料................................................................... 23
2-2.4奈米觸媒方面....................................................................... 25
2-3樹枝狀高分子的非典型螢光現象............................................ 26
2-3.1含氮樹枝狀高分子可發出藍色螢光................................... 26
2-3.2樹枝狀高分子發螢光原因的探討....................................... 27
2-3.3樹枝狀高分子的螢光強度可以調整................................... 30
2-3.4生物影像上的應用............................................................... 30
2-4有機/無機混成材料................................................................... 33
2-5實驗動機.................................................................................... 36
第三章 實驗部分.............................................................................. 38
3-1實驗藥品.................................................................................... 38
3-1.1反應試劑............................................................................... 38
3-1.2有機溶劑............................................................................... 39
3-2儀器設備.................................................................................... 40
3-2.1核磁共振儀........................................................................... 40
3-2.2紫外線光譜儀....................................................................... 40
3-2.3傅立葉轉紅外線光譜........................................................... 41
3-2.4穿透式電子顯微鏡............................................................... 41
3-2.5微差掃描熱卡計................................................................... 42
3-2.6熱重分析儀........................................................................... 42
3-2.7螢光光譜儀........................................................................... 43
3-3實驗步驟.................................................................................... 44
3-3.1 N-Boc-APDEA的合成......................................................... 44
3-3.2 N-Boc-AB2的合成............................................................... 46
3-3.3單體N-(3-Aminopropyl) diethyl hydrogen succinate amine (APDEHSA)的合成...........................................................................
47
3-3.4超樹枝高分子HBPs的合成................................................. 49
3-3.5超樹枝高分子HBPs的分子量鑑定..................................... 51
3-3.6 Fe3O4無機材料的合成......................................................... 52
3-3.7 HBPs/Fe3O4有機/無機混成材料的合成............................. 52
3-3.8 HBPs水溶液的螢光強度分析-隨pH值之放光變化.......... 54
3-3.9 HBPs水溶液的臨界微胞濃度¬-螢光光譜儀分析法........... 55
第四章 結果與討論.......................................................................... 56
4-1 N-Boc-APDEA的鑑定與分析.................................................. 56
4-1.1 NMR的鑑定......................................................................... 56
4-1.2 FT-IR的鑑定........................................................................ 57
4-2 N-Boc-AB2的鑑定與分析........................................................ 59
4-2.1 NMR的鑑定......................................................................... 59
4-2.2 FT-IR的鑑定........................................................................ 60
4-3 APDEHSA(AB2 Monomer)的鑑定與分析............................... 61
4-3.1 NMR的鑑定......................................................................... 61
4-3.2 FT-IR的鑑定........................................................................ 64
4-4 HBPs的鑑定與分析.................................................................. 65
4-4.1 NMR的鑑定......................................................................... 66
4-4.2 FT-IR的鑑定........................................................................ 68
4-4.3 HBPs的分子量鑑定............................................................. 70
4-5 HBPs的熱性質分析.................................................................. 72
4-5.1 DSC的分析.......................................................................... 72
4-5.2 TGA的分析.......................................................................... 73
4-6 HBPs光學性質的分析.............................................................. 74
4-6.1 HBPs的酸滴定..................................................................... 74
4-6.2 HBPs水溶液在不同pH值下的螢光現象........................... 74
4-6.3計算HBPs的量子產率......................................................... 76
4-6.4 HBPs水溶液的臨界微胞濃度測試..................................... 79
4-7 Fe3O4/HBPs混成材料的鑑定與分析....................................... 80
4-7.1 FT-IR的分析........................................................................ 81
4-7.2 TGA的分析.......................................................................... 82
4-7.3 TEM的觀察.......................................................................... 83
第五章 結論...................................................................................... 87
第六章 未來工作與設計策略.......................................................... 88
6-1以相同起始物構築新單體與超樹枝狀高分子........................ 88
6-2新的AB2單體之鑑定與聚合.................................................... 90
6-3設計與合合發散式的新規則型樹枝狀高分子........................ 92
參考文獻............................................................................................ 95


圖目錄
圖1-1. 以分子結構區分之高分子類型........................................... 1
圖1-2. (a)超樹枝狀高分子;(b)規則樹枝狀高分子.......................... 2
圖1-3. 樹枝狀高分子的立體圖與基本結構................................... 2
圖1-4. 樹枝狀高分子之藥物載體示意圖....................................... 3
圖1-5 .雙性高分子在不同極性溶劑中的自組裝現象.................... 4
圖1-6. 各種分子於溶劑或基材中的自組裝行為........................... 5
圖1-7. 樹枝狀高分子PAMAM經調整pH值後的螢光現象.......... 6
圖2-1. 樹枝狀高分子的分類圖....................................................... 9
圖2-2. 規則樹枝狀高分子結構示意圖........................................... 10
圖2-3. 樹枝狀高分子G2 PAMAM之分子結構.............................. 11
圖2-4. 不同世代的PAMAM立體圖................................................ 11
圖2-5. 規則樹枝狀分子合成方法:發散式和收斂式之示意圖..... 13
圖2-6. 以發散式所合成的兩種樹枝狀高分子共聚物................... 14
圖2-7. 以收斂式所合成的兩種樹枝狀高分子共聚物................... 14
圖2-8. 超樹枝狀高分子之不同聚合方式示意圖........................... 16
圖2-9. Dendrimer與Hyperbranched的分歧度(DB)差別示意圖..... 17
圖2-10. 超樹枝狀高分子的分歧度(DB)公式計算......................... 18
圖2-11. 超樹枝狀高分子依據分歧度(DB)的不同所呈現的構型. 18
圖2-12. 樹枝狀高分子提升所包覆的藥物溶解度之機制推測圖. 20
圖2-13. 高分子RHBs與DNA結合的現象..................................... 21
圖2-14. RHBs高分子在B16F10老鼠細胞中展現出低細胞毒性.. 22
圖2-15. 樹枝狀高分子在不同世代與不同溫度下的液晶現象..... 23
圖2-16. 各種型態的高分子自組裝行為......................................... 24
圖2-17. 金屬粒子於規則樹枝狀分子內還原之示意圖................. 25
圖2-18. 利用規則樹枝狀分子設計精準控制金屬粒子還原位置. 25
圖2-19. 含氮的樹枝狀高分子能發出藍色甚至多種顏色的螢光. 26
圖2-20. G4 PAMAM樹枝狀高分子與TEA過氧化胺自由基的UV/vis吸收光譜比較........................................................................
28
圖2-21. 將相同單體聚合形成hyperbranched polymer或linear polymer時的吸收與放射光譜的比較..............................................
29
圖2-22. 將hyperbranched polymer交聯成nanoparticles前後的吸收與放射光譜比較........................................................................
29
圖2-23. 不同世代的PAMAM螢光強度與pH值關係圖................ 30
圖2-24. 合成HPAMAM NPs的實驗流程圖................................... 31
圖2-25. HPAMAM NPs的吸收與放射光譜、多色螢光現象以及螢光強度隨時間的變化圖譜............................................................
32
圖2-26. 以不同激發波長照射結合HPAMAM NPs的HepG2細胞所觀察到的螢光現象....................................................................
32
圖2-27. 樹枝狀高分子操控無機層板材料之示意圖..................... 33
圖2-28. 高分子PNIPAm與奈米氧化鐵結合示意圖...................... 34
圖2-29. 奈米氧化鐵經由含矽烷基的TMSPMA修飾前以及修飾後的TEM影像...............................................................................
35
圖2-30. 經TMSPMA修飾的奈米氧化鐵聚合前與聚合後的磁滯曲線圖............................................................................................
35
圖2-31. 本研究之超樹枝狀高分子合成設計示意圖..................... 37
圖3-1. 單體N-(3-Aminopropyl) diethyl hydrogen succinate amine (APDEHSA)的全合成流程圖...........................................................
44
圖3-2. N-Boc-APDEA的合成流程圖.............................................. 45
圖3-3. N-Boc-AB2的合成流程圖..................................................... 47
圖3-4. APDEHSA之AB2-type 單體合成流程圖............................ 48
圖3-5. 超樹枝高分子HBPs的合成結構示意圖............................. 51
圖3-6. 合成HBPs/Fe3O4 奈米粒子的實驗流程圖......................... 53
圖3-7. 螢光量子產率計算式........................................................... 55
圖4-1. N-Boc-APDEA的1H-NMR (300MHz, D2O)圖譜................ 56
圖4-2. N-Boc-APDEA的13C-NMR (300MHz, D2O)圖譜............ 57
圖4-3. N-Boc-APDEA的FT-IR圖譜................................................ 58
圖4-4. N-Boc-AB2的1H-NMR (300 MHz, D2O)圖譜...................... 59
圖4-5. N-Boc-AB2的13C-NMR (300MHz, D2O)圖譜...................... 60
圖4-6. N-Boc-AB2的FT-IR圖譜...................................................... 61
圖4-7. 單體APDEHSA的1H-NMR (300MHz, D2O)圖譜.............. 62
圖4-8. 單體APDEHSA的13C-NMR (300MHz, D2O)圖譜............. 63
圖4-9. 合成單體的起始物N-Bob-APDEA、N-Boc-AB2與單體APDEHSA的1H-NMR (300MHz, D2O) 疊圖.................................
63
圖4-10. 單體APDEHSA的FT-IR圖譜........................................... 64
圖4-11. 超樹枝狀高分子HBP01M的1H-NMR (300MHz, D2O)圖譜....................................................................................................
66
圖4-12. 超樹枝狀高分子HBP05M的1H-NMR (300MHz, D2O)圖譜....................................................................................................
67
圖4-13. 超樹枝狀高分子DHBP的1H-NMR (300MHz, D2O)圖譜 67
圖4-14. 超樹枝狀高分子DHBP-H的1H-NMR (300MHz, D2O)圖譜....................................................................................................
68
圖4-15. 超樹枝狀高分子HBP01M的FT-IR圖譜.......................... 69
圖4-16. 超樹枝狀高分子HBPs、單體、起始物的FT-IR疊圖......... 69
圖4-17. HBP01M接上Boc後的1H-NMR (300MHz, D2O)圖譜..... 70
圖4-18. HBP-DH接上Boc後的1H-NMR (300MHz, D2O)圖譜..... 70
圖4-19. DHBP接上Boc後的1H-NMR (300MHz, D2O)圖譜.......... 71
圖4-20. HBPs的DSC熱分析圖譜.................................................... 72
圖4-21. HBPs在空氣環境下的TGA熱分析圖譜........................... 73
圖4-22. 高分子HBP01M的螢光強度隨pH值變化之照片........... 74
圖4-23. 高分子HBP01M的螢光強度隨pH值之變化疊圖........... 75
圖4-24. 高分子HBP01M在不同濃度下的螢光變化..................... 76
圖4-25. 將HBP01M的螢光積分值與濃度做圖............................. 77
圖4-26. 各種條件下的HBPs螢光量子產率之比較圖................... 77
圖4-27. HBP01M在TEM的影像中所觀察到的微胞現象............. 79
圖4-28. 利用pyrene螢光強度之比值與HBP01M的濃度之對數作圖....................................................................................................
80
圖4-29. Fe3O4/HBPs混成材料與Fe3O4的FT-IR疊圖..................... 81
圖4-30. Fe3O4/HBPs混成材料的TGA熱分析圖............................. 82
圖4-31. 未修飾Fe3O4奈米粒子的TEM照片.................................. 83
圖4-32. Fe3O4/HBPs混成材料的TEM照片.................................... 84
圖4-33. Fe3O4/HBPs混成材料的TEM照片.................................... 85
圖4-34. Fe3O4/HBPs的磁性測試照片.............................................. 86
圖6-1. 以相同起使物合成新AB2-type單體之實驗流程圖........... 88
圖6-2. 以新的單體聚合成出外圍有大量OH官能基的超樹枝狀高分子之合成設計圖........................................................................
89
圖6-3. 以新的單體聚合成超樹枝狀高分子之實驗結果示意圖... 89
圖6-4. 新型AB2-type單體之1H-NMR (300MHz, D2O)圖譜......... 90
圖6-5. 新的AB2單體環化形成imide的1H-NMR (300MHz, D2O)圖譜............................................................................................
91
圖6-6. 新的AB2單體環化形成imide (G1)的13C-NMR (300MHz, D2O)圖譜............................................................................................
91
圖6-7. 以N-Boc-AB2為G1,合成發散式dendrimer的設計圖....... 92
圖6-8. 新型G1.5 dendron樹枝狀結構的1H-NMR (300MHz, D2O)圖譜............................................................................................ 93
圖6-9. 新型G2 dendron樹枝狀結構的1H-NMR (300MHz, D2O)圖譜.................................................................................................... 93
圖6-10. 透過發散式合成法設計出新的dendrimer示意圖............ 94




表目錄

表2-1. 商業化規則樹枝狀高分子(PAMAM&PPI)之物理性質.......................................................................................................
12
表2-2:超樹枝狀高分子(hyperbranched polymer)與規則樹枝狀高分子(dendrimer)的優劣勢比較.........................................................
15
表3-1. 不同反應條件下的HBPs之產率......................................... 50
表3-2. 不同反應條件下的奈米氧化鐵混成材料之產率............... 53
表4-1. 在不同條件下所合成的hyperbranched polymer之鑑定........................................................................................................
65
表4-2. 各種比例Fe3O4/HBPs混成材料的比較.............................. 80

1. Juang, T.-Y.; Jeng, R.-J.; Dai, S. A., 規則樹枝裝高分子之製備及其應用. 工程 2008, 81, 90-104.
2. Grayson, S. M.; Fréchet, J. M. J., Convergent Dendrons and Dendrimers:  from Synthesis to Applications. Chem. Rev. 2001, 101, 3819-3868.
3. Bosman, A. W.; Janssen, H. M.; Meijer, E. W., About Dendrimers:  Structure, Physical Properties, and Applications. Chem. Rev. 1999, 99, 1665-1688.
4. Svenson, S.; Tomalia, D. A., Dendrimers in biomedical applications—reflections on the field. Adv. Drug Delivery Rev. 2005, 57, 2106-2129.
5. Chen, J.; Wu, C.; Oupický, D., Bioreducible Hyperbranched Poly(amido amine)s for Gene Delivery. Biomacromolecules 2009, 10, 2921-2927.
6. Didehban, K.; Namazi, H.; Entezami, A. A., Dendrimer-based hydrogen-bonded liquid crystalline complexes: Synthesis and characterization. Eur. Polym. J. 2009, 45, 1836-1844.
7. Zhou, Y.; Yan, D., Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions: progress, characteristics and perspectives. Chem. Commun. 2009, 1172-1188.
8. Shimizu, T.; Masuda, M.; Minamikawa, H., Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chem. Rev. 2005, 105, 1401-1444.
9. Chu, C.-C.; Ueno, N.; Imae, T., Solid-Phase Synthesis of Amphiphilic Dendron-Surface-Modified Silica Particles and Their Application Toward Water Purification. Chem. Mater. 2008, 20, 2669-2676.
10. Cao, W.; Zhu, L., Synthesis and Unimolecular Micelles of Amphiphilic Dendrimer-like Star Polymer with Various Functional Surface Groups. Macromolecules 2011, 44, 1500-1512.
11. Wang, D.; Imae, T., Fluorescence Emission from Dendrimers and Its pH Dependence. J. Am. Chem. Soc. 2004, 126, 13204-13205.
12. Lee, W. I.; Bae, Y.; Bard, A. J., Strong Blue Photoluminescence and ECL from OH-Terminated PAMAM Dendrimers in the Absence of Gold Nanoparticles. J. Am. Chem. Soc. 2004, 126, 8358-8359.
13. Leisner, D.; Imae, T., Polyelectrolyte Behavior of an Interpolyelectrolyte Complex Formed in Aqueous Solution of a Charged Dendrimer and Sodium Poly(l-glutamate). J. Phys. Chem. B 2003, 107, 13158-13167.
14. (a) Flory, P. J., Molecular Size Distribution in Three Dimensional Polymers. III. Tetrafunctional Branching Units. J. Am. Chem. Soc. 1941, 63, 3096-3100; (b) Haskins, W. T.; Hann, R. M.; Hudson, C. S., The Structure of Dibenzylidene Dulcitol (1,3:4,6-Dibenzylidene-dulcitol)1. J. Am. Chem. Soc. 1942, 64, 132-136.
15. D. A. Tomalia, H. B., J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, A New Class of Polymers: Starburst-Dendritic Macromolecules Poly. J. 1985, 17, 117-132.
16. Carlmark, A.; Hawker, C.; Hult, A.; Malkoch, M., New methodologies in the construction of dendritic materials. Chem. Soc. Rev. 2009, 38, 352-362.
17. Medina, S. H.; El-Sayed, M. E. H., Dendrimers as Carriers for Delivery of Chemotherapeutic Agents. Chem. Rev. 2009, 109, 3141-3157.
18. Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K., Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J. Org. Chem. 1985, 50, 2003-2004.
19. Technical data from DSM Fine Chemicals (The Netherlands) and Dendritech, Inc (Midland, MI, USA).
20. Seiler, M., Hyperbranched polymers: Phase behavior and new applications in the field of chemical engineering. Fluid Phase Equilib. 2006, 241, 155-174.
21. Carnahan, M. A.; Grinstaff, M. W., Synthesis of Generational Polyester Dendrimers Derived from Glycerol and Succinic or Adipic Acid. Macromolecules 2005, 39, 609-616.
22. Miller, T. M.; Neenan, T. X., Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzenes. Chem. Mater. 1990, 2, 346-349.
23. Hawker, C. J.; Frechet, J. M. J., Unusual macromolecular architectures: the convergent growth approach to dendritic polyesters and novel block copolymers. J. Am. Chem. Soc. 1992, 114, 8405-8413.
24. Jikei, M.; Kakimoto, M.-A., Hyperbranched Aromatic Polyamides Prepared by Direct Polycondensation. High. Perform. Polym. 2001, 13, S33-S43.
25. Voit, B. I.; Lederer, A., Hyperbranched and Highly Branched Polymer Architectures—Synthetic Strategies and Major Characterization Aspects. Chem. Rev. 2009, 109, 5924-5973.
26. Hölter, D.; Burgath, A.; Frey, H., Degree of branching in hyperbranched polymers. Acta. Polym. Sin. 1997, 48, 30-35.
27. Jikei, M.; Kakimoto, M.-a., Hyperbranched polymers: a promising new class of materials. Prog. Polym. Sci. 2001, 26, 1233-1285.
28. Segawa, Y.; Higashihara, T.; Ueda, M., Hyperbranched Polymers with Controlled Degree of Branching from 0 to 100%. J. Am. Chem. Soc. 2010, 132, 11000-11001.
29. Gupta, U.; Agashe, H. B.; Asthana, A.; Jain, N. K., Dendrimers:  Novel Polymeric Nanoarchitectures for Solubility Enhancement. Biomacromolecules 2006, 7, 649-658.
30. Ma, H.; Chen, B.; Sassa, T.; Dalton, L. R.; Jen, A. K. Y., Highly Efficient and Thermally Stable Nonlinear Optical Dendrimer for Electrooptics. J. Am. Chem. Soc. 2001, 123, 986-987.
31. Scott, R. W. J.; Wilson, O. M.; Crooks, R. M., Synthesis, Characterization, and Applications of Dendrimer-Encapsulated Nanoparticles. J. Phys.Chem.B 2004, 109, 692-704.
32. Nakajima, R.; Tsuruta, M.; Higuchi, M.; Yamamoto, K., Fine Control of the Release and Encapsulation of Fe Ions in Dendrimers through Ferritin-like Redox Switching. J. Am. Chem. Soc. 2004, 126, 1630-1631.
33. Yang, W.; Pan, C.-Y., Synthesis and Fluorescent Properties of Biodegradable Hyperbranched Poly(amido amine)s. Macromol. Rapid. Commun. 2009, 30, 2096-2101.
34. Chu, C.-C.; Imae, T., Fluorescence Investigations of Oxygen-Doped Simple Amine Compared with Fluorescent PAMAM Dendrimer. Macromol. Rapid. Commun. 2009, 30, 89-93.
35. Lalevée, J.; Allonas, X.; Fouassier, J. P., New access to the peroxyl radicals reactivity? Chem. Phys. Lett. 2007, 445, 62-67.
36. Yang, W.; Pan, C.-Y.; Liu, X.-Q.; Wang, J., Multiple Functional Hyperbranched Poly(amido amine) Nanoparticles: Synthesis and Application in Cell Imaging. Biomacromolecules 2011, 12, 1523-1531.
37. Jasmine, M. J.; Kavitha, M.; Prasad, E., Effect of solvent-controlled aggregation on the intrinsic emission properties of PAMAM dendrimers. J. Lumin. 2009, 129, 506-513.
38. Yang, W.; Pan, C.-Y.; Luo, M.-D.; Zhang, H.-B., Fluorescent Mannose-Functionalized Hyperbranched Poly(amido amine)s: Synthesis and Interaction with E. coli. Biomacromolecules 2010, 11, 1840-1846.
39. Sun, J.; Zhou, S.; Hou, P.; Yang, Y.; Weng, J.; Li, X.; Li, M., Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. A 2007, 80A, 333-341.
40. Ninjbadgar, T.; Brougham, D. F., Epoxy Ring Opening Phase Transfer as a General Route to Water Dispersible Superparamagnetic Fe3O4 Nanoparticles and Their Application as Positive MRI Contrast Agents. Adv. Funct. Mater. 2011, 21, 4769-4775.
41. Tsai, C.-C.; Juang, T.-Y.; Dai, S. A.; Wu, T.-M.; Su, W.-C.; Liu, Y.-L.; Jeng, R.-J., Synthesis and montmorillonite-intercalated behavior of dendritic surfactants. J. Mater. Chem. 2006, 16, 2056-2063.
42. Chen, T.; Cao, Z.; Guo, X.; Nie, J.; Xu, J.; Fan, Z.; Du, B., Preparation and characterization of thermosensitive organic–inorganic hybrid microgels with functional Fe3O4 nanoparticles as crosslinker. Polymer 2011, 52, 172-179.
43. Grabchev, I.; Bosch, P.; McKenna, M.; Staneva, D., A new colorimetric and fluorimetric sensor for metal cations based on poly(propilene amine) dendrimer modified with 1,8-naphthalimide. J. Photoch. Photobio. A 2009, 201, 75-80.
44. Soliman, G. M.; Sharma, R.; Choi, A. O.; Varshney, S. K.; Winnik, F. M.; Kakkar, A. K.; Maysinger, D., Tailoring the efficacy of nimodipine drug delivery using nanocarriers based on A2B miktoarm star polymers. Biomaterials 2010, 31, 8382-8392.
45. Du, B.; Mei, A.; Yang, Y.; Zhang, Q.; Wang, Q.; Xu, J.; Fan, Z., Synthesis and micelle behavior of (PNIPAm-PtBA-PNIPAm)m amphiphilic multiblock copolymer. Polymer 2010, 51, 3493-3502.
46. Li, X.; Lu, X.; Lin, Y.; Zhan, J.; Li, Y.; Liu, Z.; Chen, X.; Liu, S., Synthesis and Characterization of Hyperbranched Poly(ester-amide)s from Commercially Available Dicarboxylic Acids and Multihydroxyl Primary Amines. Macromolecules 2006, 39, 7889-7899.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top