(3.227.235.183) 您好!臺灣時間:2021/04/20 09:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃筱君
研究生(外文):Shiao-Chun Huang
論文名稱:乾燥程序對聚丙烯醯胺薄膜形態之影響
論文名稱(外文):The Effect of Drying Procedure on the Morphology of the Polyacrylamid Film
指導教授:李茂田
指導教授(外文):Maw-Tien Lee
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:應用化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:98
中文關鍵詞:聚丙烯醯胺表面形態乾燥速率
外文關鍵詞:PAMmorphologydrying rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本文探討不同濃度的非離子型、低羧基含量以及高羧基含量三種不同類型的聚丙烯醯胺溶液在不同乾燥程序條件下,於載玻片基板上形成薄膜的結構形態之影響與其構成原因。實驗結果顯示,不同的聚丙烯醯胺類型影響其溶質與玻璃基板之吸附行為,而不同的乾燥程序則會影響聚丙烯醯胺液滴蒸發速率。環境溫度 30 ℃,相對溼度 30% 的常溫烘乾程序為聚丙烯醯胺結構展開之較佳條件,非離子型聚丙烯醯胺薄膜形成由核心向外展開,類似樹枝狀分支之結構形態,由於非離子型聚丙烯醯胺比陰離子型聚丙烯醯胺吸附力較佳,因此其結構形成的主要位置為薄膜中心;陰離子型低羧基含量聚丙烯醯胺則呈現顆粒或團聚狀分佈於薄膜邊緣或接觸線處;陰離子型高羧基含量聚丙烯醯胺則形成分支支幹較粗,類似稻穗狀之展開形態,其主要結構位於薄膜邊緣。環境溫度30 ℃,相對溼度 70% 的常溫陰乾條件下,聚丙烯醯胺液滴內部對流作用微弱,導致吸附於載玻片基板上之聚丙烯醯胺溶質無法藉由對流作用而展開,故其結構呈現顆粒狀形態;溫度提高至 50 ℃ 之高溫烘乾組,溫度提升導致相對濕度更低,因此吸附於玻璃基板上之聚丙烯醯胺結構來不及展開即乾燥成膜,故其結構變小或以顆粒團聚狀呈現。
In this study, we observed the morphology of the polyacrylamide (PAM) film on the glass substrate. PAM with various carboxyl contents, non carboxyl, low carboxyl, and high carboxyl, were used in our experiments. The effect of the drying rate on the morphology of the PAM film was also studied by controlling the environmental temperature and humidity. Experimental results showed that both the carboxyl content of PAM and drying procedure affected the adsorption behavior of PAM on the glass substrate and resulted in different morphology of the PAM film. Various drying rate induced the different fluid velocity within PAM solution and affected the morphology of PAM film. The carboxyl content of PAM had great influence on the interaction between PAM and the substrate and therefore affected the morphology of PAM film.
摘要 I
ABSTRACT II
致謝 III
總目錄 V
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
第二章 文獻回顧 3
2-1 聚合物 3
2-1-1 聚合物分類 3
2-1-2 聚合物結構 5
2-1-3 聚合物-固體表面之吸附作用 7
2-2 聚丙烯醯胺 9
2-2-1 聚丙烯醯胺特性 9
2-2-2 聚丙烯醯胺的製備 10
2-2-3 聚丙烯醯胺之應用 13
第三章 實驗部分 15
3-1 實驗藥品 16
3-2 樣品準備 16
3-3 實驗器材 19
3-4 儀器設備 19
3-4-1 光學顯微鏡 ( Optical Microscope, OM ) 20
3-4-2 原子力顯微鏡 ( Atomic Force Microscope, AFM ) 21
3-4-2-1 原子力顯微鏡構造與成像原理 24
3-4-2-2 原子力顯微鏡操作模式 28
3-4-2-2-1 接觸模式 ( Contact Mode ) 28
3-4-2-2-2 非接觸模式 ( Non- contact Mode ) 29
3-4-2-2-3 半接觸模式 ( Semi- contact Mode ) 30
3-4-2-3 力-距離曲線 ( Force vs. Distance ) 31
3-4-2-3-1 力-距離曲線 31
3-4-2-3-2 力分佈成像 34
3-4-2-3-3 影響力曲線測定的因素 35
3-4-2-3-4 原子力顯微鏡探針之磨耗問題 36
3-4-2-3-5 探針之磨耗現象 37
3-4-2-3-6 探針損耗之預防 40
3-4-2-4 原子力顯微鏡試驗 41
3-4-3 界面電位 ( Zeta Potential ) 42
3-4-3-1 界面電位定義 42
3-4-3-2 界面電位測定原理 44
3-4-3-3 界面電位試驗 45
第四章 結果與討論 46
4-1 化學性質測試 46
4-1-1 界面電位試驗 46
4-1-2 pH值試驗 49
4-1-3 導電度試驗 51
4-2 表面形態分析 53
4-2-1 聚丙烯醯胺液滴蒸發過程 53
4-2-2 光學顯微鏡 ( OM ) 分析 56
4-2-2-1 非離子型聚丙烯醯胺 56
4-2-2-2 陰離子型低羧基含量聚丙烯醯胺 61
4-2-2-3 陰離子型高羧基含量聚丙烯醯胺 65
4-2-3 原子力顯微鏡 ( AFM ) 分析 69
4-2-3-1 非離子型聚丙烯醯胺 69
4-2-3-2 陰離子型低羧基含量聚丙烯醯胺 80
4-2-3-3 陰離子型高羧基含量聚丙烯醯胺 86
第五章 結論 92
參考文獻 96

1. Staudinger, H.; Fritschi, J., Über Isopren und Kautschuk. 5. Mitteilung. Über die Hydrierung des Kautschuks und über seine Konstitution. Helvetica Chimica Acta 1922, 5 (5), 785-806.
2. Wei Ting, W.; Maw Tien, L., Characteristics of Polyacrylamide Films. 國立嘉義大學應用化學所碩士論文 2010.
3. Liu, H.; Zhen, M.; Wu, R., Ionic-Strength- and pH-Responsive Poly[acrylamide-co-(maleic acid)] Hydrogel Nanofibers. Macromolecular Chemistry and Physics 2007, 208 (8), 874-880.
4. Netz, R. R.; Andelman, D., Neutral and charged polymers at interfaces. Physics Reports 2003, 380 (1-2), 1-95.
5. Flory, P. J., Principles of Polymer Chemistry. 1953.
6. Alan, A. F., Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics. International journal of toxicology 2005, 24, 21-50.
7. 龔東慶; 林韶凱, 高分子聚合物對環境及人體健康危害初探. 水利土木科技資訊季刊 24期.
8. Singh, V.; Tiwari, A.; Kumari, P.; Sharma, A. K., Microwave accelerated synthesis and characterization of poly(acrylamide). Journal of Applied Polymer Science 2007, 104 (6), 3702-3707.
9. Mortimer, D. A., Synthetic polyelectrolytes—A review. Polymer International 1991, 25 (1), 29-41.
10. Barvenik, F. W., Polyacrylamide Characteristics Related to Soil Applications. Soil Science 1994, 158, 235-243.
11. Hu, X.; Cai, Q.-G.; Liu, L.-Y.; Li, S.-J., Impact of Polyacrylamide on Development of Loess Soil Surface Crust. 18 2004.
12. Wang, X.-B.; Cai, D.-X., Research and Application of Soil Conditioner in Agriculture. Plant Nutrition and Fertilizer Science 2000, 6, 457- 463.
13. Agag, T.; Koga, T.; Takeichi, T., Studies on Thermal and Mechanical Properties of Polyimide–clay Nanocomposites. Polymer International 2001, 42, 3399-3408.
14. Nabzar, L.; Pefferkon, E.; Varoqui, R., Polyacrylamide-sodium Kaolinite Interaction: Flocculation Behavior of Polymer clay Suspensions. Journal of Colloid and Interface Science 1984, 102, 380-388.
15. Nabzar, L.; Pefferkon, E.; Varoqui, R., Stability of Polymer-clay Suspensions. The Polyacrylamide-sodium Kaolinite Systems. Colloids Surfaces 1988, 30, 345-353.
16. Ray, D. T.; Hogg, R., Agglomerate Breakage in Polymer-flocculated Suspensions. Journal of Colloid and Interface Science 1987, 116, 256-268.
97
17. Naeer, M. S.; James, A. E., The Effect of Polyacrylamide Charge Density and Molecular Weight on the Flocculation and Sedimentation Behavior of Kaolinite Suspensions. Separation Purification Technology 2006, 52, 241-252.
18. Deng, Y.; Dixon, J. B.; White, G. N., Adsorption of Polyacrylamide on semectite, illite, and kaolinite. Soil Science Society of America Journal 2006, 70, 297-304.
19. T, M.; Ghannam, Interfacial Properties of Polyacrylamide Solutions. Journal of Applied Polymer Science 1999, 74, 219–227.
20. Shen, L.; Yuan, Z.; He, B., Shiyou Huagong. 20 1991, 345.
21. Yen, T. F., Microbial Enhanced Oil Recovery: Principle and Practice. CRC Press Inc 1990, 25, 1353-1366.
22. Tanaka, H.; Ödberg, L.; Wagberg, L.; T. Lindström, Adsorption of Cationic Polyacrylamides onto Monodisperse Polystyrene Lattices and Cellulose Fiber. Effect of Molecular Weight and Charge Density of Cationic Polyacrylamides. Journal of Colloid and Interface Science 1990, 134, 219–228.
23. Lu, Z.; Chen, T.; Zhu, X., Study on Application of Polyacrylamide (PAM) to Treating Sludge Water in Water Plant. Shanghai Environmental Sciences 2000, 19, 66.
24. Chen, W.-J., Study on the Industrial Fermentation Wastewater by Electroflocculation Method and Its Sludge Conditioning with Polyelectrolytes. 臺北科技大學學報 2001, 34, 23-25.
25. Evers, O. A.; Fleer, G. J.; Scheutjens, J. M. H. M., Laterally Resolved Measurement of Interaction Forces between Surfaces That Are Partly Covered with Polyelectrolytes. Journal of Colloid and Interface Science 1986, 111, 446.
26. 蕭如珀; 楊信男, 物理雙月刊. 2007, 29 (2), 605-606.
27. Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E., Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters 1982, 49 (1), 57-61.
28. Binnig, G.; Quate, C. F., Atomic Force Microscope. Physical Review Letters 1986, 56 (9), 930-933.
29. 張憲彰; 陳哲雄; 林俊勳; 林汶瑞; 吳靖宙, 原子力顯微鏡(Atomic Force Microscopy)成像原理與中文簡易操作手冊. 3-14.
30. Grit Hüttl; Beyer, D.; Müller, E., Investigation of Electrical Double Layers on SiO2 Surfaces by Means of Force vs. Distance Measurements. Surface and Interface Analysis 1997, 25, 543-547.
31. 鎧柏科技譯, 俄國 NT-MDT公司 AFM Pro 操作手冊. 2003, 47.
32. Hoh, J. H.; Engel, A., Friction Effects on Force Measurements with an Atomic Force Microscope. Langmuir 1993, 9 (11), 3310-3312.
33. 朱怡銘; 吳兆棋, 針對產業應用之掃描探針顯微鏡 - 需求與技術瓶頸的突破. 2005, 108-118.
98
34. Chung, K. H.; Lee, Y. H.; Kim, D. E., Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip. Ultramicroscopy 2005, 102 (2), 161-71.
35. Plank, J.; Hirsch, C., Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cement and Concrete Research 2007, 37 (4), 537-542.
36. Ricka, J.; Tanaka, T., Swelling of Ionic Gels: Quantitative Performance of the Donnan Theory. Mcromolecules 2001, 17, 2916-2921.
37. Kramer, G.; Somasundaran, P., Conformational Behavior of Polyelectrolyte Complexes at the Solid-Liquid Interface. Langmuir 2002, 18 (24), 9357-9361.
38. Deng∗, Y.; Dixon, J. B.; White, G. N.; Loeppert, R. H.; Juom, A. S. R., Bonding Between Polyacrylamide And Smectite. Colloids and Surfaces A 2006, 281, 82-91.
39. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A., Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827-829.
40. Liu, G.; Zhang, C.; Zhao, J.; Zhu, Y., Study of the morphology of the three-phase contact line and its evolution by morphological examination after droplet evaporation of aqueous polymer solutions. Langmuir 2008, 24 (15), 7923-30.
41. Gupta, S.; Agrawal, M.; Uhlmann, P.; Simon, F.; Stamm, M., Poly(N-isopropyl acrylamide) Gold Nanoassemblies on Macroscopic surfaces Fabrication, Characterization, and Application. Chemistry of Materials 2010, 22 (2), 504-509.
42. Cooperstein, M. A.; Canavan, H. E., Biological cell detachment from poly(N-isopropyl acrylamide) and its applications. Langmuir 2010, 26 (11), 7695-707.
43. Song, X.; Cao, M.; Han, Y.; Wang, Y.; Kwak, J. C. T., Adsorption of Hydrophobically Modified Poly(acrylamide)-co-(acrylic acid) on an Amino-Functionalized Surface and Its Response to the External Solvent Environment. Langmuir 2007, 23 (8), 4279-4285.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔