(18.207.129.82) 您好!臺灣時間:2021/04/19 21:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林永倫
論文名稱:探討N-butyl-N-(4-hydroxybutyl)nitrosamine和無機砷誘導泌尿道上皮細胞的癌化現象
論文名稱(外文):Study of urothelium carcinogenesis induced by N-butyl-N-(4-hydroxybutyl)nitrosamine and inorganic arsenic
指導教授:劉怡文劉怡文引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:微生物免疫與生物藥學系研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
畢業學年度:100
語文別:中文
中文關鍵詞:無機砷膀胱癌甲基化
外文關鍵詞:BBNsodium arsenicDNA methylation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
無機砷是其中一個存在於環境中的汙染物,通常長時間暴露無機砷與膀胱癌的生成有關。 膀胱癌是個在intravesical治療之後會高度復發的癌症,很多人死於此癌症的原因是由於膀胱癌侵略轉移的結果。在本篇研究我們提供第一個證據在飲水中的無機砷對於促進N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)誘導膀胱組織傷害扮演一個重要角色。BBN誘導的傷害主要出現在膀胱上皮層和submucosal層。BBN會造成submucosal層變薄、glycosaminoglycan layer缺失和增加DNA deoxyguanosine氧化傷害及cytosine甲基化程度。當10 ppm 無機砷和BBN合用處理老鼠後發現合用組膀胱的submucosal層變薄的程度比BBN單獨處理組來的嚴重。此外無機砷不只會增加deoxyguanosine 氧化程度,也會改變cytosine甲基化程度。在生物化學分析上顯示無機砷會降低膀胱組織中的抗氧化酵素的活性(包括 glutathione reductase和glucose-6-phosphate dehydrogenase)和NAD(P)H quinone oxidoreductase-1 (NQO-1)蛋白質表現,也會增加specific protein 1 (Sp1)蛋白質表現。在BBN誘導膀胱腫瘤生成的期間,利用2D電泳分析膀胱mucosal蛋白質表現的變化情形,並從中挑選9個可能與膀胱癌發展有關的蛋白質進一步利用westerm blot確認蛋白質表現量的變化。在膀胱癌生成過程中GSTM1蛋白質表現量會隨之下降,而GSTO1則隨之上升。綜合以上結果來看,在飲用水加入無機砷可以加速BBN誘導小鼠膀胱組織癌前的傷害而且在8-hydroxy-2’-deoxyguanosine、 5-methylcytosine、NQO-1和Sp1的變化可能可以做為膀胱癌癌病變前的markers。另一方面,長期BBN處理確實會誘發膀胱腫瘤產生,而在腫瘤生成過程中,down-regulation的蛋白質 (如: GSTM1、14-3-3 σ和A-FABP)及up-regulation 的蛋白質 (如: GSTO1)的變化可能作為膀胱癌腫瘤生成前的biomarker。
圖表目錄....... IV
Abstract...... VI
中文摘要...... VIII
縮寫檢索表 (abbreviations)..... X
I. 序論...... 1
I-1 膀胱癌...... 1
1-2 生物標記 (Biomarker)...... 3
I-3砷...... 3
I-3-1 無機砷介紹...... 3
I-3-2 無機砷代謝及毒性...... 4
I-3-3 無機砷致癌探討....... 4
I-4 N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)...... 5
I-4-1 N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)介紹... 5
I-4-2 BBN代謝過程與其致癌機轉.... 6
I-5 實驗目的.... 7
II. 材料與方法.... 8
II-1 藥品試劑.... 8
II-2 常用溶液配置..... 11
II-3 實驗方法與步驟..... 14
II-3-1 Animal condition..... 14
II-3-2 Tissue homogenization..... 16
II-3-3 protein concentration assay...... 17
II-3-3 GSH-reductase activity assay..... 18
II-3-4 Catalase activity assay..... 19
II-3-5 Glucose-6-phosphate dehydrogenase (G6PDH) activity assay..... 20
II-3-6 Western blotting...... 22
II-3-7 2D electrophoresis..... 23
II-3-8 Immunohistochemisty (IHC)..... 23
III. 結果..... 25
III-1 BBN and/or AsNaO2 對C57BL/6小鼠體重之影響..... 25
III-2 BBN and/or AsNaO2對膀胱組織型態之影響...... 25
III-3 AsNaO2促進BBN誘導小鼠膀胱上皮細胞層的DNA 氧化傷害..... 26
III-4 BBN and/or AsNaO2對於小鼠膀胱上皮細胞層整體DNA cytosine C5甲基化情形..... 26
III-5 從mice bladder homogenates中分析BBN and/or AsNaO2對抗氧化酵素活性的影響...... 27
III-6 BBN and/or AsNaO2對抗氧化蛋白NQO-1及turmeric transcription factor Sp1蛋白質表現之影響..... 28
III-7 BBN長時間誘導膀胱癌形成過程中之膀胱組織形態變化情形.... 29
III-8 以2D electrophoresis 分析BBN誘發膀胱癌形成過程中之蛋白質變化情形..... 30
III-9 BBN誘發膀胱癌腫瘤生成過程之蛋白質表現變化.... 30
III-10 不同劑量BBN and/or 固定劑量AsNaO2作用下對NQO-1, GSTM1和GSTO1蛋白質表現量之影響... 31
IV. 討論..... 32
V. 結論..... 36
VI. References...... 37

1. 行政院衛生署2011年主要死因統計。 ( http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?now_fod_list_no=11962&class_no=440&level_no=4 )
2. Jemal, A., et al. Global cancer statistics. CA: a cancer journal for clinicians 61, 69-90 (2011).
3. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA: a cancer journal for clinicians 62, 10-29 (2012).
4. Jemal, A., et al. Cancer statistics, 2008. CA: a cancer journal for clinicians 58, 71-96 (2008).
5. Jemal, A., et al. Cancer statistics, 2009. CA: a cancer journal for clinicians 59, 225-249 (2009).
6. Jemal, A., Siegel, R., Xu, J. & Ward, E. Cancer statistics, 2010. CA: a cancer journal for clinicians 60, 277-300 (2010).
7. Siegel, R., Ward, E., Brawley, O. & Jemal, A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA: a cancer journal for clinicians 61, 212-236 (2011).
8. Lower, G.M., Jr. Concepts in causality: chemically induced human urinary bladder cancer. Cancer 49, 1056-1066 (1982).
9. Murta-Nascimento, C., et al. Epidemiology of urinary bladder cancer: from tumor development to patient's death. World journal of urology 25, 285-295 (2007).
10. Mundy, A.R., Fitzpatrick, J.M., Neal, D.E. & George, N.J.R. Transitional cell carcinoma of bladder. Scientific of Urology. 1999 (1999).
11. Barocas, D.A. & Clark, P.E. Bladder cancer. Curr Opin Oncol 20, 307-314 (2008).
12. Spiess, P.E. & Czerniak, B. Dual-track pathway of bladder carcinogenesis: practical implications. Archives of pathology & laboratory medicine 130, 844-852 (2006).
13. Jacobs, B.L., Lee, C.T. & Montie, J.E. Bladder cancer in 2010: how far have we come? CA: a cancer journal for clinicians 60, 244-272 (2010).
14. Moreira, J.M., Gromov, P. & Celis, J.E. Expression of the tumor suppressor protein 14-3-3 sigma is down-regulated in invasive transitional cell carcinomas of the urinary bladder undergoing epithelial-to-mesenchymal transition. Molecular & cellular proteomics : MCP 3, 410-419 (2004).
15. Ohlsson, G., Moreira, J.M., Gromov, P., Sauter, G. & Celis, J.E. Loss of expression of the adipocyte-type fatty acid-binding protein (A-FABP) is associated with progression of human urothelial carcinomas. Molecular & cellular proteomics : MCP 4, 570-581 (2005).
16. Chen, C.J., Chuang, Y.C., You, S.L., Lin, T.M. & Wu, H.Y. A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan. British journal of cancer 53, 399-405 (1986).
17. Chen, C.J., et al. Atherogenicity and carcinogenicity of high-arsenic artesian well water. Multiple risk factors and related malignant neoplasms of blackfoot disease. Arteriosclerosis 8, 452-460 (1988).
18. Kurttio, P., Pukkala, E., Kahelin, H., Auvinen, A. & Pekkanen, J. Arsenic concentrations in well water and risk of bladder and kidney cancer in Finland. Environmental health perspectives 107, 705-710 (1999).
19. Smith, A.H., Lingas, E.O. & Rahman, M. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of the World Health Organization 78, 1093-1103 (2000).
20. Cho, K.H., Sthiannopkao, S., Pachepsky, Y.A., Kim, K.W. & Kim, J.H. Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network. Water research 45, 5535-5544 (2011).
21. Abhyankar, L.N., Jones, M.R., Guallar, E. & Navas-Acien, A. Arsenic exposure and hypertension: a systematic review. Environmental health perspectives 120, 494-500 (2012).
22. Yuan, Y., et al. Kidney cancer mortality: fifty-year latency patterns related to arsenic exposure. Epidemiology 21, 103-108 (2010).
23. Srivastava, S., et al. Arsenic exacerbates atherosclerotic lesion formation and inflammation in ApoE-/- mice. Toxicology and applied pharmacology 241, 90-100 (2009).
24. Vahidnia, A., van der Voet, G.B. & de Wolff, F.A. Arsenic neurotoxicity--a review. Human & experimental toxicology 26, 823-832 (2007).
25. Diaz-Villasenor, A., Burns, A.L., Hiriart, M., Cebrian, M.E. & Ostrosky-Wegman, P. Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus. Toxicology and applied pharmacology 225, 123-133 (2007).
26. Chiou, H.Y., et al. Incidence of transitional cell carcinoma and arsenic in drinking water: a follow-up study of 8,102 residents in an arseniasis-endemic area in northeastern Taiwan. American journal of epidemiology 153, 411-418 (2001).
27. Rossman, T.G. Mechanism of arsenic carcinogenesis: an integrated approach. Mutation research 533, 37-65 (2003).
28. Marshall, G., et al. Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. Journal of the National Cancer Institute 99, 920-928 (2007).
29. Kligerman, A.D., et al. Methylated trivalent arsenicals as candidate ultimate genotoxic forms of arsenic: induction of chromosomal mutations but not gene mutations. Environmental and molecular mutagenesis 42, 192-205 (2003).
30. Wang, T.S., et al. Endonuclease III, formamidopyrimidine-DNA glycosylase, and proteinase K additively enhance arsenic-induced DNA strand breaks in human cells. Chemical research in toxicology 15, 1254-1258 (2002).
31. Schwerdtle, T., Walter, I., Mackiw, I. & Hartwig, A. Induction of oxidative DNA damage by arsenite and its trivalent and pentavalent methylated metabolites in cultured human cells and isolated DNA. Carcinogenesis 24, 967-974 (2003).
32. Evans, M.D., Dizdaroglu, M. & Cooke, M.S. Oxidative DNA damage and disease: induction, repair and significance. Mutation research 567, 1-61 (2004).
33. Qin, X.J., et al. Dual actions involved in arsenite-induced oxidative DNA damage. Chemical research in toxicology 21, 1806-1813 (2008).
34. Wu, J.-Z. & Ho, P. Comparing the Relative Oxidative DNA Damage Caused by Various Arsenic Species by Quantifying Urinary Levels of 8-Hydroxy-2′-Deoxyguanosine with Isotope-Dilution Liquid Chromatography/Mass Spectrometry. Pharmaceutical Research 26, 1525-1533 (2009).
35. Mei, N., et al. Genetic predisposition to the cytotoxicity of arsenic: the role of DNA damage and ATM. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 17, 2310-2312 (2003).
36. Akram, Z., et al. Genotoxicity of sodium arsenite and DNA fragmentation in ovarian cells of rat. Toxicology letters 190, 81-85 (2009).
37. Zupancic, D., Ovcak, Z., Vidmar, G. & Romih, R. Altered expression of UPIa, UPIb, UPII, and UPIIIa during urothelial carcinogenesis induced by N-butyl-N-(4-hydroxybutyl)nitrosamine in rats. Virchows Archiv : an international journal of pathology 458, 603-613 (2011).
38. Whitbread, A.K., et al. Characterization of the omega class of glutathione transferases. Methods in enzymology 401, 78-99 (2005).
39. Maiti, S. & Chatterjee, A.K. Effects on levels of glutathione and some related enzymes in tissues after an acute arsenic exposure in rats and their relationship to dietary protein deficiency. Archives of Toxicology 75, 531-537 (2001).
40. Schuliga, M., Chouchane, S. & Snow, E.T. Upregulation of glutathione-related genes and enzyme activities in cultured human cells by sublethal concentrations of inorganic arsenic. Toxicological sciences 70, 183-192 (2002).
41. Nemeti, B. & Gregus, Z. Glutathione-dependent reduction of arsenate in human erythrocytes--a process independent of purine nucleoside phosphorylase. Toxicological sciences 82, 419-428 (2004).
42. Hayakawa, T., Kobayashi, Y., Cui, X. & Hirano, S. A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Archives of Toxicology 79, 183-191 (2005).
43. Mandal, B.K., Ogra, Y. & Suzuki, K.T. Speciation of arsenic in human nail and hair from arsenic-affected area by HPLC-inductively coupled argon plasma mass spectrometry. Toxicol Appl Pharmacol 189, 73-83 (2003).
44. Wang, Z., Zhou, J., Lu, X., Gong, Z. & Le, X.C. Arsenic speciation in urine from acute promyelocytic leukemia patients undergoing arsenic trioxide treatment. Chemical research in toxicology 17, 95-103 (2004).
45. Huang, R.N. & Lee, T.C. Cellular uptake of trivalent arsenite and pentavalent arsenate in KB cells cultured in phosphate-free medium. Toxicology and applied pharmacology 136, 243-249 (1996).
46. Hirano, S., et al. Difference in uptake and toxicity of trivalent and pentavalent inorganic arsenic in rat heart microvessel endothelial cells. Archives of Toxicology 77, 305-312 (2003).
47. Petrick, J.S., Ayala-Fierro, F., Cullen, W.R., Carter, D.E. & Vasken Aposhian, H. Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicology and applied pharmacology 163, 203-207 (2000).
48. Petrick, J.S., Jagadish, B., Mash, E.A. & Aposhian, H.V. Monomethylarsonous acid (MMA(III)) and arsenite: LD(50) in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chemical research in toxicology 14, 651-656 (2001).
49. Chan, P. & Huff, J. Arsenic carcinogenesis in animals and in humans: mechanistic, experimental, and epidemiological evidence. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 83-122 (1997).
50. IARC (International Agency for Research on Cancer)`, In IARC`, Monograghs on Evaluation of Carcinogenic Risks of Chemicals to Humans: Some Metals and Metallic Compounds`, World Health Organization`, IARC`, Lyon`, 1980`, Vol. 23.
51. IARC`, In IARC Monograghs on Evaluation of Carcinogenic Risks of Chemicals to Humans: Overall Evaluations of Carcinogenicity: An Updating of IARC Monograghs 1 to 42`, World Health Organization`, IARC`, Lyon`, 1987`, Suppl. 7.
52. Byron, W.R., Bierbower, G.W., Brouwer, J.B. & Hansen, W.H. Pathologic changes in rats and dogs from two-year feeding of sodium arsenite or sodium arsenate. Toxicology and applied pharmacology 10, 132-147 (1967).
53. Cui, X., et al. Subchronic exposure to arsenic through drinking water alters expression of cancer-related genes in rat liver. Toxicologic pathology 32, 64-72 (2004).
54. Waalkes, M.P., et al. Arsenic exposure in utero exacerbates skin cancer response in adulthood with contemporaneous distortion of tumor stem cell dynamics. Cancer Research 68, 8278-8285 (2008).
55. Yamamoto, S., et al. Cancer induction by an organic arsenic compound, dimethylarsinic acid (cacodylic acid), in F344/DuCrj rats after pretreatment with five carcinogens. Cancer Research 55, 1271-1276 (1995).
56. Wanibuchi, H., et al. Promoting effects of dimethylarsinic acid on N-butyl-N-(4-hydroxybutyl)nitrosamine-induced urinary bladder carcinogenesis in rats. Carcinogenesis 17, 2435-2439 (1996).
57. Erturk, E., Cohen, S.M., Price, J.M. & Bryan, G.T. Pathogenesis, histology, and transplantability of urinary bladder carcinomas induced in albino rats by oral administration of N-(4-(5-nitro-2-furyl)-2-thiazolyl)formamide. Cancer Research 29, 2219-2228 (1969).
58. Oyasu, R., Iwasaki, T., Matsumoto, M., Hirao, Y. & Tabuchi, Y. Induction of tumors in heterotopic bladder by topical application of N-methyl-N-nitrosourea and N-butyl-N-(3-carboxypropyl)nitrosamine. Cancer Research 38, 3019-3025 (1978).
59. Steinberg, G.D., Brendler, C.B., Ichikawa, T., Squire, R.A. & Isaacs, J.T. Characterization of an N-methyl-N-nitrosourea-induced autochthonous rat bladder cancer model. Cancer Research 50, 6668-6674 (1990).
60. Bonfanti, M., Magagnotti, C., Bonati, M., Fanelli, R. & Airoldi, L. Pharmacokinetic profile and metabolism of N-nitrosobutyl-(4-hydroxybutyl)amine in rats. Cancer Research 48, 3666-3669 (1988).
61. Iida, K., et al. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Research 64, 6424-6431 (2004).
62. Jiang, T., Huang, Z., Chan, J.Y. & Zhang, D.D. Nrf2 protects against As(III)-induced damage in mouse liver and bladder. Toxicology and applied pharmacology 240, 8-14 (2009).
63. Parsons, C.L., Stauffer, C. & Schmidt, J.D. Bladder-surface glycosaminoglycans: an efficient mechanism of environmental adaptation. Science 208, 605-607 (1980).
64. Hurst, R.E. Structure, function, and pathology of proteoglycans and glycosaminoglycans in the urinary tract. World journal of urology 12, 3-10 (1994).
65. Ogawa, K., et al. Comparison of uroplakin expression during urothelial carcinogenesis induced by N-butyl-N-(4-hydroxybutyl)nitrosamine in rats and mice. Toxicologic pathology 27, 645-651 (1999).
66. Bodenstab, W., Kaufman, J. & Parsons, C.L. Inactivation of antiadherence effect of bladder surface glycosaminoglycan by a complete urinary carcinogen (N-methyl-N-nitrosourea). The Journal of urology 129, 200-201 (1983).
67. Ogawa, K., et al. Comparison of uroplakin expression during urothelial carcinogenesis induced by N-butyl-N-(4-hydroxybutyl)nitrosamine in rats and mice. Toxicol Pathol 27, 645-651 (1999).
68. Wu, X.R., Kong, X.P., Pellicer, A., Kreibich, G. & Sun, T.T. Uroplakins in urothelial biology, function, and disease. Kidney international 75, 1153-1165 (2009).
69. Castillo-Martin, M., Domingo-Domenech, J., Karni-Schmidt, O., Matos, T. & Cordon-Cardo, C. Molecular pathways of urothelial development and bladder tumorigenesis. Urologic oncology 28, 401-408 (2010).
70. Bird, A. DNA methylation patterns and epigenetic memory. Genes & development 16, 6-21 (2002).
71. Robertson, K.D. DNA methylation and human disease. Nature reviews. Genetics 6, 597-610 (2005).
72. Widschwendter, M. & Jones, P.A. DNA methylation and breast carcinogenesis. Oncogene 21, 5462-5482 (2002).
73. Ehrlich, M. DNA methylation in cancer: too much, but also too little. Oncogene 21, 5400-5413 (2002).
74. Phe, V., Cussenot, O. & Roupret, M. Interest of methylated genes as biomarkers in urothelial cell carcinomas of the urinary tract. BJU international 104, 896-901 (2009).
75. Toniolo, D., Martini, G., Migeon, B.R. & Dono, R. Expression of the G6PD locus on the human X chromosome is associated with demethylation of three CpG islands within 100 kb of DNA. The EMBO journal 7, 401-406 (1988).
76. Tada, M., et al. Hypermethylation of NAD(P)H: quinone oxidoreductase 1 (NQO1) gene in human hepatocellular carcinoma. Journal of hepatology 42, 511-519 (2005).
77. Zhang, R., Xu, G., Chen, W. & Zhang, W. Genetic polymorphisms of glutathione S-transferase M1 and bladder cancer risk: a meta-analysis of 26 studies. Molecular Biology Reports 38, 2491-2497 (2011).
78. Whitbread, A.K., et al. Characterization of the omega class of glutathione transferases. Methods Enzymol 401, 78-99 (2005).
79. Cui, X., Kobayashi, Y., Akashi, M. & Okayasu, R. Metabolism and the paradoxical effects of arsenic: carcinogenesis and anticancer. Current medicinal chemistry 15, 2293-2304 (2008).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔