跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/13 18:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張家銘
研究生(外文):Chia-Ming Chang
論文名稱:南灣海域碳酸鹽系統分布特性與季節性變化之研究
論文名稱(外文):Seasonal variability of carbonate system characteristics in Nanwan, southern Taiwan
指導教授:孟培傑孟培傑引用關係劉弼仁劉弼仁引用關係
指導教授(外文):Pei-Jie MengPi-Jen Liu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物多樣性及演化研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
論文頁數:156
中文關鍵詞:南灣海域酸鹼值總鹼度二氧化碳分壓
外文關鍵詞:NanWan BaypHtotal alkalinitypartial pressure of CO2
相關次數:
  • 被引用被引用:6
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
在不同類型的海洋生態系中,冰山與珊瑚礁生態系被視為受到全球暖化與酸化的影響最為嚴重。因此,本研究分別於2011年3月31日、7月5日及10月20日,在南灣珊瑚礁海域共17個測站,測量海水酸鹼值(pH)、總鹼度(TA)、營養鹽等並計算二氧化碳分壓(pCO2),探討南灣海域生地化作用下,碳酸鹽系統的空間分布與季節性變化並評估表水pCO2的影響因子。結果顯示,整個南灣水體有明顯的垂直混合作用,夏、秋兩季的水文特性垂直變化與碳酸鹽系統參數均有明顯的相關性存在,由於春季的水文特性與混合作用相對於其他季節不同,造成春季溫、鹽及碳酸鹽系統參數與夏、秋兩季呈現不同的相關性。再者,從表層水體碳酸鹽系統參數的相關性顯示,除了季節性水團特性及溫度的影響以外,垂直混合作用、間歇性的湧升流及生物作用等也控制著表水pCO2的變化。此外,評估表水pCO2的季節性變化的控制因子,春季為非溫度效應大於溫度效應;夏季為溫度效應大於非溫度效應;秋季則為兩種效應相互間的影響,使得pCO2的變化在此效應下有相互抵消的效果。值得注意的是,所謂非溫度效應在本研究中不單純只有生物作用,且包括垂直混合作用以及海氣交換等作用。由表水pCO2的計算結果顯示,春季平均值為393.7 μatm、夏季平均值為406.3 μatm、秋季平均值為399.2 μatm,且夏、秋兩季皆高於大氣二氧化碳濃度(分別為397 μatm、392 μatm、392 μatm)。再由季節性△pCO2的變化分別為-3.2 μatm、14.3 μatm、7.2 μatm,顯示南灣珊瑚礁海域主要為大氣CO2的源(Source),計算CO2的海氣交換通量為3.6g m−2 year−1,並估計年釋放量約108.43t。此外,颱風暴雨期間造成陸源的輸入等,衝擊近岸環境的生地化作用,亦會造成pCO2的差異與CO2海氣交換通量的變化。
This has a profound impact on different parts of marine ecosystem. Icebergs and coral reefs are most affected by global warming and acidification of seawater. The study were based on surface and water column measurements of the total alkalinity (TA), pH value, nutrients and calculated partial pressure of CO2 (pCO2) and conducted at a total of 17 stations in the NanWan coral reef regions from 13-May 2011, 5-Jul 2011 and 20-Oct 2011, respectively. The objective of this study is to explore the seasonal variability of carbonate system parameters and to identify the factors affecting the pCO2 of surface water. The results of the study show a vertical mixing of water column in the NanWan region. There is an obvious correlation between carbonate system parameters seasonal variability and vertical mixing reaction in summer and autumn. Furthermore, the spring hydrographical characteristics and vertical mixing of water column is different from the other seasons and therefore contributing to the discrepancy of data collected as correlation of temperature, salinity, carbonate system parameters for summer and autumn. In addition, the carbonate parameters of surface water show that apart from seasonal variability and fluctuations in temperatures, vertical mixing of water column, intermittent upwelling of water and the effect of biological also account for the changes in pCO2. The control factors of pCO2 in surface water during seasonal changes lead to the following conclusion. The non-temperature related effect during spring is greater than temperature related effects. The reverse is true for summer while both temperate and non-temperature related effects more or less offset each other in autumn. One point to note, non-temperature related effects are made up of not only the effect of biological but also vertical mixing of water column and the exchange of gases in NanWan. According to calculations, the data of pCO2 in surface water is namely 393.7µatm in spring, 406.3µatm in summer and 399.2µatm in autumn. The study found that the density of CO2 in summer and fall is higher than CO2 level in the atmosphere. (397µatm, 392µatm and 392µatm respectively) The seasonal fluctuations are -3.2µatm, 14.3µatm and 7.2µatm. These figures indicate that the Nan Wan coral reef region is the source of CO2 in the atmosphere. The calculation of the exchange of sea gases is at 3.6 g m-2 year-1 while the annual release of gases is 108.43t. Moreover, the inflow of fresh water from the land during typhoon seasons also has an impact on marine life near the coastal areas, which will in turn lead to differences in pCO2 and CO2 in the exchange of sea gases.
摘要 ................................І
Abstract ..............................Ⅲ
第一章 緒論 ............................1
1.1 前言............................1
1.2 碳酸鹽系統.........................2
1.3 暖化與酸化環境下的海洋生態系................4
1.4 研究背景與動機.......................6
1.5 研究目的..........................9
第二章 材料與方法.........................11
2.1 測站位置 .........................11
2.2 採樣方法 .........................11
2.3 分析方法 .........................12
2.3.1 海水酸鹼值(pH)測定..................12
2.3.2 海水總鹼值(TA)測定..................12
2.3.3 海水中二氧化碳分壓(pCO2)之計算............13
2.3.4 海水營養鹽之測定...................14
2.3.5 海水葉綠素甲之測定..................15
2.3.6 二氧化碳海-氣交換通量之計算 .............15
第三章 結果............................17
3.1 水文特性與分布 ......................17
3.2 碳酸鹽系統參數之空間分布 .................18
3.2.1 酸鹼值(pH值)之分布 .................18
3.2.2 總鹼值(TA)之分布...................19
3.2.3 二氧化碳分壓(pCO2)之分布...............19
3.3 葉綠素甲(Chlorophyll a)與營養鹽之分布 ............20
3.4 水文與碳酸鹽參數之季節性比較 ...............22
3.5 △pCO2與CO2海氣交換通量空間分布.............22
第四章 討論............................25
4.1 水文特性與碳酸鹽系統參數之相關性 .............25
4.2 影響表水二氧化碳分壓之變化及控制因子 ...........27
4.3 △pCO2與CO2海氣交換通量空間分布.............33
第五章 結論............................37
參考文獻..............................39
表.................................53
圖.................................77
附錄 營養鹽檢測項目的採樣需求及保存方法..............155
李宏仁 (1999) 南灣潮流驅動渦漩及冷水入侵成因之探討。博士論文。國立台灣大學海洋研究所。127頁。
李柔螢 (1987) 台灣西南水團移動分析。碩士論文。國立台灣海洋大學海洋研究所。76頁。
周文臣 (2004) 南海時間序列測站海水之碳化學參數與碳-13之垂直分佈及其在混合層中的季節變化。博士論文。國立中山大學海洋地質及化學研究所。211頁。
孟培傑、鍾國南、陳正平、陳明輝、劉銘欽、張揚祺、樊同雲、林幸助、劉弼仁、張家銘、方力行、邵廣昭 (2007a) 墾丁國家公園海域生態之長期監測研究。國家公園學報17 (2):71-88頁。
孟培傑、鍾國南、陳正平、陳明輝、劉銘欽、張揚祺、樊同雲、林幸助、劉弼仁、張家銘、方力行、邵廣昭 (2007b) 人為活動對墾丁國家公園海域生態衝擊之長期監測研究。國家公園學報17 (2):89-111頁。
孟培傑 (2011) 全球氣候變遷預警機制-海域水質環境資料長期連續即時監測。墾丁國家公園管理處委託辦理計畫。143頁。
苗祐軍 (2007) 南灣珊瑚礁海域浮游生物群聚呼吸率及有機碳循環之研究。碩士論文。國立臺灣師範大學生命科學研究所。55頁。
蘇清河 (2009) 南灣海域營養鹽通量之研究。碩士論文。國立台灣海洋大學研究所。101頁。
陳儀芳 (2010) 東海表水碳化學參數季節性變化之空間分布。碩士論文。國立台灣海洋大學研究所。76頁。
曾宗凡 (2008) 2007年夏季東海表水碳化學參數之空間分布特徵及其控制因 子。碩士論文。國立中山大學研究所。61頁。
趙家儷 (2004) 南灣海域浮游植物群聚組成之時空變異研究。碩士論文。國立台灣師範大學研究所。78頁。

Bates, N.R., Samuels, L., Merlivat, L., 2001. Biogeochemical and physical factors influencing seawater fCO2 and air-sea CO2 exchange on the Bermuda coral reef. Limnology and Oceanography 46 (4), 833–846.
Bellwood, D.R., Hughes, T.P., Folke, C., Nyström, M., 2004. Confronting the coral reef crisis. Nature 429, 827-833.
Borges, A.V., 2005. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28 (1), 3-27.
Borges, A.V., Delille, B., Frankignoulle, M., 2005. Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophysical Research Letters 32, L14601.
Borges, A.V., Frankignoulle, M., 2002. Distribution of surface carbon dioxide and air-sea exchange in the upwelling system off the Galician coast. Global Biogeochemical Cycles 16 (2), 1020.
Borges, A.V., Gypens, N., 2010. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification. Limnology and Oceanography 55 (1), 346-353.
Boyce, D.G., Lewis, M.R., Worm, B., 2010. Global phytoplankton decline over the past century. Nature 466, 591-596.
Brewer, P.G., Goldman, J.C., 1976. Alkalinity changes and coral reef calcification. Limonology And Oceanography 23 (5), 989-991.
Cai, P.H., Huang, Y.P., Chen, M., Guo, L.D., Liu, G.S., Qiu, Y.S., 2002. New production based on Ra-228-derived nutrient budgets and thorium-estimated POC export at the intercalibration station in the South China Sea. Deep-Sea Research I 49, 53-66.
Cai, W.J., Wang, Z.A., Wang, Y., 2003. The role of marsh-dominated heterotrophic continental margins in transport of CO2 between the atmosphere, the land-sea interface and the ocean. Geophysical Research Letters 30 (16), 1849.
Caldeira, K., Wickett, M.E., 2003. Anthropogenic carbon and ocean pH. Nature 425 (6956), 365.
Canadell, J.G., Quéré, C.L., Raupach, M.R., Field, C.B., Buitenhuis, E.T., Ciais, P., Conway, T.J., Gillett, N.P., Houghton, R.A., Marland, G., 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences 104, 18866-18870.
Cao, L., Caldeira, K., Jain, A.K., 2007. Effects of carbon dioxide and climate change on ocean acidification and carbonate mineral saturation. Geophysical Research Letters 34, L05607.
Cao Z., Dai, M., Lu, Z., Zhou, K., 2009. CaCO3 to organic carbon ratio in the South China Sea. Advances in Geosciences 12: Ocean Science (OS). Singapore: World Scientific Publishing, 109-125.
Carpenter, K., Abrar, M., Aeby, G., 2008. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560-563.
Chen, C.T.A., Wang, S.L., Wang, B.J., Pai, S.C., 2001. Nutrient budgets for the South China Sea basin. Marine Chemistry 75, 281-300.
Chen, C.T.A., Hsing, L.Y., Liu, C.L., Wang, S.L., 2004. Degree of nutrient consumption of upwelled water in the Taiwan Strait based on dissolved organic phosphorus or nitrogen. Marine Chemistry 87, 73-86.
Chen, C.T.A., Hsing, L.Y., 2005. Degree of nutrient consumption as an aging index of upwelling or vertically mixed water in the northern Taiwan Strait. Oceanologica Acta 24, 115-124.
Chou, W.C., Gong, G.C., Tseng, C.M., Sheu, D.D., Hung, C.C., Chang, L.P., Wang, L.W., 2011. The carbonate system in the East China Sea in winter. Marine Chemistry 123, 44-55.
Cooper, T.F., Déath, G., Fabricius, K.E., Lough, J.M., 2008. Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Global Change Biology 14, 529-538.
Crossland, C.J., Hatcher, B.G., Smithe, S.V., 1991. Role of coral reefs in global ocean production. Coral Reefs 10, 55-64.
Curry, R., Mauritzen, C., 2005. Dilution of the Northern North Atlantic Ocean in Recent Decades. Science 308, 1772.
da Cunha, L.C., Buitenhuis, E.T., Le Quéré, C., Giraud, X., Ludwig, W., 2007. Potential impact of changes in river nutrient supply on global ocean biogeochemistry. Global Biogeochemical Cycles (21), GB4007.
Dai, M.H., Lu, Z.M., Zhai, W.D., Chen, B.S., Cao, Z.M., Zhou, K.B., Cai, W.J., Chen, C.T.A., 2009. Diurnal variations of surface seawater pCO2 in contrasting coastal environments. American Society of Limnology and Oceanography 54 (3), 735-745.
De Carlo, E.H., Hoover, D.J., Young, C.W., Scheinberg, R.D., Mackenzie, F.T., 2007. Impact of storm runoff from tropical watersheds on coastal water quality and productivity. Applied Geochemistry 22 (8), 1777-1797.
de la Paz, M., Huertas, E.M., Padín, Xose-Antonio., Gónzalez-Dávila, M., Santana-Casiano, M., Forja, J.M., Orbi, A., Pérez, F.F., Ríos, A.F., 2011. Reconstruction of the seasonal cycle of air-sea CO2 fluxes in the Strait of Gibraltar. Marine Chemistry 126, 155-162.
Dickson, A.G., Millero, F.J., 1987. A comparison of the equilibrium constants for the dissociation of the carbon acid in seawater media. Deep-Sea Research 34, 1733-1743.
Dickson, A.G., Sabine, C.L., Christian, J.R. (Eds.), 2007. Guide to best practices for ocean CO2 measurements. PICES special publication 3, 191pp.
Doney, S.C., Mahowald, N., Lima, I., Feely, R.A., Mackenzie, F.T., Lamarque, J.F., Rasch, P.J., 2007. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proceedings of the National Academy of Sciences 104 (37), 14580-14585.
Dore, J.E., Lukas, R., Sadler, D.W., Church, M.J, Karl, D.M., 2009. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proceedings of the National Academy of Sciences 106, 12235-12240.
Dugdale, R.C., Wilkerson, F.P., 1989. New production in the upwelling center at Point Conception, California: temporal and spatial patterns. Deep Sea Research Part A, Oceanographic Research 36, 985-1007.
Emanuel, K., 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686-688.
Evans, W., Hales, B., Strutton, P.G., Ianson, D., 2012. Sea-air CO2 fluxes in the western Canadian coastal ocean. Progress in Oceanography 101, 78-91.
Fabry, V.J., Seibel, B.A., Feely, R.A., Orr, J.C., 2008. Impacts of ocean acidification on marine fauna and ecosystem processes, ICES Journal of Marine Science 65, 414-432.
Fagan, K.E., Mackenzie, F.T., 2007. Air-sea CO2 exchange in a subtropical estuarine-coral reef system, Kaneohe Bay, Oahu, Hawaii. Marine Chemistry 106, 174-191.
Fan, K.L., Yu, C.Y., 1981. A study of water masses in the seas of southernmost of Taiwan. ACTA Oceanographica Taiwanica (12), 94-111.
Frankignoulle, M., Copin-Montegut, G., Pichon, M., Gattuso, J.P., Biondo, R., Bourge, I., 1996. Carbon fluxes in coral reefs. Eulerian study of inorganic carbon dynamics and measurement of air-sea CO2 exchanges. Marine Ecology. Progress Series 145 (1-3), 123-132.
Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E., Theate, J.M., 1998. Carbon dioxide emission from European estuaries. Science 282 (5388), 434-436.
Friederich, G.E., Walz, P.M., Burczynski, M.G., Chavez, F.P., 2002. Inorganic carbon in the central California upwelling system during the 1997-1999 El Nino-La Nina event. Oceanography 54 (1-4), 185-203.
Gattuso, J.P., Frankignoulle, M., Smith, S.V., 1999. Measurement of community metabolism and significance in the coral reef CO2 source-sink debate. Geophysics ecology 96 (23), 13017-13022.
Gattuso, J.P., Pichon, M., Frankignoulle, M., 1995. Biological control of air-sea CO2 fluxes: effect of photosynthetic and calcifying marine organisms and ecosystems. Marine Ecology 129, 307-312.
Gattuso, J.P., Pichon, M., Delesalle, B., Frankignoulle, M., 1993. Community metabolism and air-sea CO2 fluxes in a coral-reef ecosystem (Moorea, French-Polynesia). Marine Ecology 96 (3), 259-267.
Gattuso, J.P., Payri, C.E., Pichon, M., Delesalle, B., Frankignoulle, M., 1997. Primary production, calcification, and air-sea CO2 fluxes of a macroalgal-dominated coral reef community (Moorea, French Polynesia). Journal of Phycology 33 (5), 729-738.
Goldman, J.C., Brewer, P.G., 1980. Effect of nitrogen source and growth rate no phytoplankton-mediated changes in alkalinity. Limonology and Oceanography 25, 352-357.
Gran, G., 1952. Determination of the equivalence point in potentiometric titrations. part II. Analyst 77, 661-671.
Guinotte, J.M., Fabry, V.J., 2008. Ocean acidification and its potential effects on marine ecosystems. Annual New York Academy of Sciences 1134, 320-342.
Gypens, N., Lacroix, G.., Lancelot, C., Borges, A.V., 2011. Seasonal and inter-annual variability of air-sea CO2 fluxes and seawater carbonate chemistry in the Southern North Sea. Oceanography 88, 59-77.
Goyet, C., Poisson, A., 1989. New determination of carbonic acid dissociation constants in seawater as a function of temperature and salinity. Deep-Sea Research 36, 1635-1654.
Goyet, C., Eischeid, G., McCue, S.J., Bellerby, R.G.J., Millero, F.J., O'Sullivan, D.W., 1998. Temporal variations of pCO2 in surface seawater of the Arabian Sea in 1995. Deep-Sea Research I, Oceanographic Research 45 (4-5), 609-623.
Hales, B., Takahashi, T., Bandstra, L., 2005. Atmospheric CO2 uptake by a coastal upwelling system. Global Biogeochemical Cycles 19 (1), GB1009.
Hansson, I., 1973a. A new set of acidity constants for carbonic acid and boric acid in sea water. Deep-Sea Research 20, 461-478.
Hansson, I., 1973b. The determination of dissociation constants of carbonic acid in synthetic seawater in the salinity range of 20-40‰ and the temperature range of 5-30 °C. Acta Chemica Scandinavica 27, 931-944.
Hendriks, I.E., Duarte, C.M., Alvarez, M., 2010. Vulnerability of marine biodiversity toocean acidification: A meta-analysis. Estuarine, Coastal and Shelf Science 86, 157-164.
Hoegh-Guldberg, O., 1999. Climate change, coral bleaching and the future of the world’s coral reefs. Marine Freshwater Research 50, 839-866.
Hoegh-Guldberg, O., Mumby, P.J., Hooten, A.J., Steneck, R.S., Greenfield, P., Gomez, E., Harvell, C.D., Sale, P.F., Edwards, A.J., Caldeira, K., Knowlton, N., Eakin, C.M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R.H., Dubi, A., Hatziolos, M.E., 2007. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737-1742.
Intergovernmental Panel on Climate Change, 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.), Cambridge, United Kingdom and New York, NY, USA, 996 pp.
Ito, R.G., Schneider, B., Thomas, H., 2005. Distribution of surface fCO2 and air-sea fluxes in the southwestern subtropical Atlantic and adjacent continental shelf. Journal of Marine Systems 56 (3-4), 227-242.
Jan, S., Chen, C.T.A., 2009. Potential biogeochemical effects from vigorous internal tides generated in Luzon Strait: A case study at the southernmost coast of Taiwan. Journal of Geophysical Research 114, C04021.
Jeffrey, S.W., Vask, M., 1997. Introduction to marine phytoplankton and their pigment signatures. In Phytoplankton pigments in oceanography (Feffrey, S.W., Mantoura, R.F.C., Wright, S.W., Eds.), 37-84, UNESCO.
Jury, C.P., Whitehead, R.F., Szmant, A.M., 2010. Effects of variations in carbonate chemistry on the calcification rates of Madracisauretenra (=Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Global Change Biology 16, 1632-1644.
Kawahata, H., Suzuki, A., Goto, K., 1997. Coral reef ecosystems as a source of atmospheric CO2: Evidence from pCO2 measurements of surface waters. Coral reefs 16, 261-266.
Kayanne, H., Suzuka, A., Saito, H., 1995. Diurnal changes in the partial pressure of carbon dioxide in coral reef water. Science 269, 214-216.
Kleypas, J.A., Langdon, C., 2006. Coral reefs and changing seawater chemistry. In: Coral Reefs and Climate Change: Science and Management, AGU Monograph Series, Coastal and Estuarine Studies. (eds. Phinney, J.T., Hoegh-Guldberg, O., Kleypas, J., Skirving, W., Strong, A.,) pp 73-110. Washington DC, American Geophysical Union.
Knowlton, N., 2001. The future of coral reefs. Proceedings of the National Academy of Sciences 98, 419-5426.
Kroeker, K., Kordas, R.L., Crim, R.N., Singh, G.G., 2010. Meta-analysis reveals negativeyet variable effects of ocean acidification on marine organisms. Ecology Letters 13, 1419-1434.
Lee, H.J., Chao, S.Y., Fan, K.L., Wang, Y.H., Liang, N.K., 1997. Tidally induced upwelling in a semi-enclosed basin: Nan Wan Bay. Journal of Oceanography 53, 467-480.
Lee, H.J., Chao, S.Y., Fan, K.L., Wang, Y.H., Liang, N.K., 1999a. Flood-ebb disparity of tidally induced recirculation eddies in a semi-enclosed basin: NanWan Bay. Continental Shelf Research 19, 871-890.
Lee, H.J., Chao, S.Y., Fan, K.L., Kuo, T.Y., 1999b, Tide-induced eddies and upwelling in a semi-enclosed basin: NanWan. Estuarine, Coastal and Shelf Science 49, 775-787.
Leichter, J. J., Wing, S.R., Miller, S.L., Denny, M.W., 1996. Pulsed delivery of subthermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limonology And Oceanography 41, 1490-1501.
Lewis, E., Wallace, D., 1998. Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. Tennessee, Oak Ridge. (Available at http://cdiac.ornl.gov/oceans/co2rprt.html).
Liang, W. D., Yang, Y.J., Tang, T.Y., Chuang, W.S., 2008. Kuroshio in the Luzon Strait. Journal of Geophysical research, 113, C08048.
Liu, K.K., Chao, S.Y., Shaw, P.T., Gong,G.C., Chen, C.C., Tang, T.Y., 2002. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: Observations and a numerical study. Deep-Sea Res. I 49, 1387-1412.
Mackenzie, F.T., Lerman, A., Andersson, A.J., 2004. Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences 1, 11-32.
Mayewski, P.A., Meredith M. P., Summerhayes C. P., Turner J., Worby A., Barrett, P. J., Casassa, G., Bertler, N.A.N., Bracegirdle, T., Naveira, Garabato, A.C., Bromwich, D., Campbell, H., Hamilton, G.S., Lyons, W.B., Maasch, K.A., Aoki, S., Xiao, C., Ommen, T.V., 2009. State of the Antarctic and Southern Ocean climate system. Reviews of Geophysics 47, RG1003.
Mehrbach, C., Culberson, C.H., Hawley, J.E., Pytkowicz, R.M., 1973. Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18, 897-907.
Meng, P.J., Lee, H.J., Wang, J.T., Chen, C.C., Lin, H.J., Tew, K.S., Hsieh, W.J., 2008. A long-term survey on anthropogenic impacts to the water quality of coral reefs, southern Taiwan. Environmental Pollution 156, 67-75.
Millero, F.J., Pierrot, D., Le,e K., Wanninkhof, R., Feely, R., 2002. Dissociation constants for carbonic acid determined from field measurements. Deep-Sea Research I 49, 1705-1723.
Murray, J.W., Johnson, E., Garside, C., 1995. A U.S. JGOFS process study in the equatorial Pacific (EqPac): Introduction. Deep Sea Research Part II. Topical Studies in Oceanography 42, 275-293.
Neftel, A., Moor, E., Oeschger, H., Stauffer, B., 1985. Evidence from polar ice coresfor the increase in atmospheric CO2 in the past two centuries. Nature 315, 45-47.
Ohde, S., Van Woesik, R., 1999. Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bulletin of Marine Science 65 (2), 559-576.
Paquay, F.S., Mackenzie, F.T., Borges, A.V., 2007. Carbon dioxide dynamics in rivers and coastal waters of the“Big Island”of Hawaii, USA, during baseline and heavy rain conditions. Aquatic Geochemistry 13(1), 1-18.
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., Stievenard, M., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429-436.
Portner, H., Langenbuch, M., Reipschlager, A., 2004. Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. Journal of Oceanography 60, 705-718.
Reaka-Kudla, M.L., 1997. Global biodiversity of coral reefs: a comparison with
rainforests. In: Reaka-Kudla, M.L., Wilson, D.E., (Eds.), Biodiversity II:
Understanding and Protecting Our Biological Resources. Joseph Henry Press.
Reaka-Kudla, M.L., 2001. Known and unknown biodiversity, risk of extinction and conservation strategy in the sea. Waters in Peril, 19-33.
Ringuet, S., Mackenzie, F.T., 2005. Controls on nutrient and phytoplankton dynamics during normal flow and storm runoff conditions, southern Kaneohe Bay, Hawaii. Estuaries 28 (3), 327-337.
Robinson, C., Serret, P., Tilstone, G., Teira, E., Zubkov, M.V., Rees, A.P., Woodward, E.M.S., 2002. Plankton respiration in the Eastern Atlantic Ocean. Deep-sea Research I 49, 787-813.
Roy, R.N., Roy, L.N., Vogel, K.M., Pearson, T., Porter-Moore, Good, C.E., Millero, F.J., Campbell, D.M., 1993. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45 °C. Marine Chemistry 44, 249-267.
Sabine, C.L., Felly, R.A., Gruber, N., Key, R.M., Lee, K., Bullister, J.L., Wanninkhof, R., Wong, C.S., Wallace, D.W.R., Tilbrook, B., Miller, F.J., Peng, T.H., Kozyr, A., Ono, T., Rios, A.R., 2004. The oceanic sink for anthropogenic CO2. Science 305, 367-371.
Sarmiento, J., Gruber, N., 2006, Carbon cycle. In Ocean Biogeochemical Dynamics. Princeton University Press, Princeton, N.J., 318-358.
Silverman, J., Lazar, B., Erez, J., 2007. Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. Journal of Geophysical Research-Oceans 112, C05004.
Smith, E.M., Hollibaugh, J.T., 1993. Coastal metabolism and the oceanic carbon balance. Review of Geophysics 31, 75-93.
Strickland, J.D.H., Parsons, T.R., 1972. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Ottawa, Canada. 310 pp.
Stumm, W., Morgan, J.J., 1981. Aquatic Chemistry. Wiley, New York. 780pp.
Suzuki, A., 1998. Combined effects of photosynthesis and calcification on the partial pressure of carbon dioxide in seawater. Journal of oceanography 54,1-7.
Suzuki, A., Kawahata, H., 2004. Reef water CO2 system and carbon production of coral reefs: topographic control of system-level performance. Global environmental change in the ocean and on land, 229-248.
Suzuki A, Kawahata H. 2004. Reef water CO2 system and carbon production of coral reefs: topographic control of system-level performance. In: Shiyomi, M., Kawahata, H., Koizumi, H., eds. Global Environmental Change in the Ocean and on Land. Tokyo: Terrapub, 229-248.
Takahashi, T., Sutherland, S.C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N.R., Wanninkhof, R., Feely, R.A., Sabine, C.L., Olafsson, J., Nojiri, Y., 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research II 49, 601-1622.
Torreton, J.P., 1999. Biomass, production and heterotrophic activity of bacterioplankton in the Great Astrolabe Reef lagoon. Coral Reefs 18, 43-53.
Veron, J.E.N., 2008b. Mass extinctions and ocean acidification: biological constraints on geological dilemmas. Coral Reefs 27, 459-472.
Wang, Z.H.A., Cai, W.J., 2004. Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (the Duplin River): a marsh CO2 pump. Limnology and Oceanography 49 (2), 341-354.
Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97 (5), 7373-7382.
Ware, J.R., Smith, S.V., Reaka-Kudla, M.L, 1991. Coral reef: sources or sinks of atmospheric CO2. Coral reefs 11 (3), 127-130.
Webster, P.J., Holland, G.J., Curry, J.A., Chang, H.R., 2005. Changes in tropical cyclone number, duration and intensity in a warming environment. Science 309, 1844-1846.
Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry 2, 203-215.
Wilkinson, C.R., 1999. Global and local threats to coral reef functioning and existence: review and predictions. Marine Freshwater Research 50, 867-878.
Wilkinson, C., 2008. Status of Coral Reefs of the World: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville, Australia.
Wolanski, E., Pickard, G.L., 1983. Upwelling by internal tides and Kelvin waves at the continental shelf break on the Great Barrier Reef. Australia. J. Marine Research 34, 65-80.
Wu, J.F., Chung, S.W., Wen, L.S. Liu, K.K., Chen,Y.L.L., Chen, H.Y., Karl, D.M., 2003. Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea. Global Biogeochemsity Cycles 17, 1008.
Yamamoto-Kawai, M., McLaughlin, F.A., Carmack, E.C., Nishino, S., Shimada, K., 2009. Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and climate change. Science, 326, 1098-1100.
Yamamoto-Kawai, M., McLaughlin, F.A., Carmack, E.C., 2011. Effects of ocean acidification, warming and melting of sea ice on aragonite saturation of the Canada Basin surface water. Geophysical Research Letters 38, L03601, 5pp.
Yan, H.Q., Yu, K.F., Shi, Q., Tan, Y.H., Zhang, H.L., Zhao, M.X., Li, S., Chen, T.R., Huang, Y., Wang, P.X., 2011. Coral reef ecosystems in the South China Sea as a source of atmospheric CO2 in summer. Chinese Science Bulletin 56, 676-684.
Yang, R.T., Dai,C.F., 1980. Community structure and species diversity of reef corals at Nanwan Bay, Taiwan. Acta Oceanographica Taiwanica 11, 238-251.
Yang, R.T., 1985. Coral communities in Nanwan Bay (Taiwan). Proc. 5th Int. Coral Reef Congr 2, 273-278.
Yuan, D., Han, W., Hu, D., 2006. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. Journal of Geophysical Research 111, C11007.
http://www.esrl.noaa.gov/gmd/ccgg/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top