跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 11:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林家豪
研究生(外文):Lin, Chia-Hao
論文名稱:以斑馬魚為模式探討內分泌調控鈣離子吸收機制
論文名稱(外文):Endocrine Control of Ca2+ Uptake In Zebrafish (Danio rerio)
指導教授:黃鵬鵬黃鵬鵬引用關係
指導教授(外文):Hwang, Pung-Pung
口試委員:黃銓珍張清風林惠真林豊益
口試委員(外文):Huang, Chang-JenChang, Ching-FongLin, Hui-ChenLin, Li-Yih
口試日期:2011-12-30
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:110
中文關鍵詞:維他命D皮質醇鈣吸收表皮鈣離子通道斑馬魚
外文關鍵詞:Vitamin Dcortisolcalcium uptakeECaCzebrafish
相關次數:
  • 被引用被引用:0
  • 點閱點閱:460
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
鈣離子牽涉許多動物的生理功能,例如:肌肉收縮、神經訊息傳導,細胞內訊號傳遞以及其他功能。在脊椎動物,調節鈣離子的吸收與排除更是與骨頭結構有密切的相關,而骨頭能夠支撐脊椎動物以及保護臟器,因此對脊椎動物而言如何維持鈣離子的恆定性是一重要議題。
陸生脊椎動物能從食物中獲取鈣離子,而水生脊椎動物,例如:魚,則是主要從周遭水環境中吸取,但兩者在特定器官的離子細胞上有相似的鈣離子吸收機制。魚類生活在鈣離子濃度處於持續變動的水環境中,因此對其而言控制鈣離子流進與流出身體是非常重要的。許多研究探討內分泌調控硬骨魚的鈣離子吸收,但是這些研究受限於缺乏基因體以及分子生理學上的分析技術,所以無法很清楚的釐清這些調控現象背後的機制與路徑。近年來,斑馬魚因為擁有在生物資訊分析以及分子生理方法學上的優勢,已經成為一個研究離子調控以及相關內分泌控制的優秀模式動物。因此本研究使用斑馬魚來進一步探討內分泌在硬骨魚鈣離子吸收功能上的角色,本研究分為兩部分探討:
1. 在第一章的研究中,探討維他命D對斑馬魚鈣離子吸收的影響,並研究其影響的機制與路徑,結果發現維他命D在魚類中也具有刺激鈣吸收功能,這作用主要藉由影響表皮鈣離子通道(ECaC)基因的表現。研究其背後的機制發現:維他命D主要是藉由斑馬魚所擁有的兩型維他命D受器(VDR)中的一型VDRa來影響鈣吸收。這研究第一次指出魚類VDR在鈣吸收功能上的意義,並且驗證維他命D對哺乳類與魚類鈣吸收有類似的影響,因此斑馬魚也許能夠提供一適合活體研究模式探討維他命D對於脊椎動物鈣吸收相關功能上的影響。
2. 在第二章的研究中,探討皮質醇(cortisol)對斑馬魚鈣離子吸收的影響,結果發現皮質醇能刺激斑馬魚鈣的吸收,這樣的作用是與哺乳類相反,研究皮質醇對鈣吸收影響的路徑發現:cortisol主要藉由影響表皮鈣離子通道(ECaC)基因的表現,而這作用機制是經由醣類皮質醇受器(GR)作用,此外皮質醇也能刺激斑馬魚中合成維他命D的酵素基因表現以影響ECaC基因表現。這研究詳細指出皮質醇影響魚類鈣吸收的路徑與機制,驗證皮質醇對魚類與哺乳類的鈣吸收影響是相反,並第一次探討魚類皮質醇對維他命D代謝的影響。

Ca2+ is an essential element that involved many physiological functions, including muscle contraction, synaptic transmission, cell signaling transduction and others in animals (Vangheluwe et al., 2009; Peacock, 2010). The regulation of Ca2+ uptake and emission are closely associated with the bone structure in vertebrates (Witten and Huysseune, 2009). The bone could support the body, provide sustained force for support and protect the organs (Datta et al., 2008). Therefore, to maintain Ca2+ homeostasis in vertebrates is important issue.
Terrestrial vertebrates mainly obtain Ca2+ from food, but aquatic vertebrates like fish, absorb Ca2+ from surrounding water. However, both terrestrial and aquatic vertebrates share the similar mechanism of Ca2+ uptake in specific ionocytes. Fish are continuously facing fluctuating environmental Ca2+ concentrations, and therefore it is critical for fish to control Ca2+ flow into or out of their bodies (Pan et al., 2005).
Many previous studies proposed the hormonal control of Ca2+ uptake in teleosts mainly based on physiological data (Evans et al. 2005; Hwang and Perry 2010). However, those previous studies did not clearly illustrate the regulatory mechanisms and pathways of the hormonal control of Ca2+ uptake probably due to the research limitations in the species studied (Hwang and Perry 2010). Those species lack well-developed genetic database and applicability of various molecular physiological approaches, and this appears to increase the difficulty to study the details of endocrine regulatory mechanisms.
Recently, zebrafish have become a model for research on ion regulation and the related endocrine controls because of the advantages in bioinformation and molecular physiology. Therefore, zebrafish provide a good model to further explore the regulatory mechanism and pathway of endocrine control in teleost Ca2+ uptake.
In this study, zebrafish was used as a model to explore the vitamin D and cortisol control of Ca2+ uptake in teleosts. The present study was delineated in the following 2 chapters.
Chapter I: Differential action of paralogous vitamin D receptors in calcium handling of zebrafish (Danio rerio)
Vitamin D is a well-known calciotropic endocrine in mammals. In carp and cod, vitamin D was reported to elevate the serum Ca2+ level (Swarup et al., 1991; Sundell et al., 1993), suggesting a similar calciotropic effect of vitamin D in teleosts. According to the current model, active transcellular Ca2+ transport is carried out through the apical epithelium channels (ECaC), and basolateral plasma membrane Ca2+-ATPase (PMCA) and the Na+/Ca2+ exchanger (NCX) in specific ionocytes in mammals and teleosts (Hoenderop et al., 2005; Hwang and Lee, 2007). It is unclear how vitamin D controls teleost Ca2+ uptake mechanism through regulations of the Ca2+-related transporters. Furthermore, vitamin D spreads its function mainly through vitamin D receptor (VDR). So far, there is no convincing data to reveal the physiological functions of 2 paralogous VDRs in teleosts. In this chapter, the regulatory mechanisms and pathways of vitamin D in Ca2+ uptake of zebrafish were dissected by treating zebrafish with exogenous vitamin D and knocking down the translation of VDRs.
Chapter II: Reverse effect of mammalian hypocalcemic cortisol in fish: cortisol stimulates Ca2+ uptake via glucocorticoid receptor-mediated vitamin D metabolism
Glucocorticoid (GC) causes hypocalcemic effects on mammals because it induces malabsorption and malemission of Ca2+ in the intestines and kidneys (Lukert and Raisz, 1990; Patschan et al., 2001; McLaughlin et al., 2002). In trout, cortisol (glucocorticoid) could stimulate branchial Ca2+ uptake and ecac transcript (Shahsavarani and Perry, 2006; Kelly and Wood, 2008), suggesting that calciotropic effect of cortisol in teleosts is different from the case in mammals; whereas, it is still unclear whether cortisol controls only ECaC or includes other Ca2+ transporters (NCX and PMCA). On the other hand, teleosts may lack aldosterone synthase (Baker, 2003; Nelson, 2003), and therefore cortisol is the main corticosteroid (CS). Some in vitro studies demonstrated the activation of teleost glucorcoticoid receptor (GR) or/and mineralocorticoid receptor (MR) by cortisol (Colombe et al., 2000; Bury et al., 2003), implying the physiological regulation by cortisol through GR or/and MR. Nevertheless, there is no study to demonstrate that cortisol regulates Ca2+ uptake mechanism through GR or/and MR. In chapter I, we dissected the mechanisms how vitamin D stimulates Ca2+ uptake in zebrafish. In mammals, glucocorticoid reveals different effects on vitamin D metabolism (Seeman et al., 1980; Bikle et al., 1993; Cosman et al., 1994); therefore it is evolutionally and physiologically important to explore the relationship between cortisol and vitamin D in zebrafish. In this chapter, the regulatory mechanisms and pathways of cortisol in Ca2+ uptake of zebrafish are investigated by exogenous cortisol treatment and translational knockdown of GR/MR.

中文摘要………………………………………………………………………… 5
Abstract
Background of the study………………………………………………7
Purpose of the study…………………………………………………9...
Chapter I. Differential action of paralogous vitamin D receptors in calcium handling of zebrafish (Danio rerio)
Abstract………………………………………………………………… 13
Introduction……………………………………………………………14..
Materials and Methods…………………………………………………18 Results…………………………………………………………………… 24 Discussion……………………………………………………………….29.
Chapter II. Reverse effect of mammalian hypocalcemic cortisol in fish: cortisol stimulates Ca2+ uptake via glucocorticoid receptor-mediated vitamin D metabolism
Abstract…………………………………………………………………37
Introduction……………………………………………………………39..
Materials and Methods…………………………………………………44
Results……………………………………………………………………48
Discussion………………………………………………………………..54.
Conclusions and perspectives………………………………………………………61
References……………………………………………………65....
Tables and figures…………………………………………………………………76

References

Abbink W, Hang XM, Guerreiro PM, Spanings FA, Ross HA, Canario AV and Flik G. Parathyroid hormone-related protein and calcium regulation in vitamin D-deficient sea bream (Sparus auratus). J Endocrinol 193: 473-480, 2007.

Bailly du Bois M, Milet C, Garabedian M, Guillozo H, Martelly E, Lopez E and

Balsan S. Calcium-dependent metabolism of 25-hydroxycholecalciferol
in silver eel tissues. Gen Comp Endocrinol 71:1–9, 1988.

Baker ME. Evolution of Glucocorticoid and Mineralocorticoid Responses: Go Fish. Endocrinology 144: 4223-4225, 2003.

Barletta F, Dhawan P and Christakos S. Integration of hormone signaling
in the regulation of human 25(OH)D3 24-hydroxylase transcription. Am J
Physiol Endocrinol Metab 286:E598-E608, 2004.

Bevelander GS, Pinto ES, Canario AV, Spanings T and Flik G. CYP27A1 expression in gilthead sea bream (Sparus auratus, L.): effects of calcitriol and parathyroid hormone-related protein. J Endocrinol 196(3):625-35, 2008.

Bikle DD, Halloran B, Fong L, Steinbach L and Shellito J. Elevated 1,25-dihydroxyvitamin D3 levels in patients with chronic obstructive pulmonary disease treated with prednisone. J Clin Endocrinol Metab 76(2): 456-461, 1993.

Bury NR, Sturm A, Le Rouzic P, Lethimonier C, Ducouret B, Guigen Y,
Robinson-Rechavi M, Laudet V and Prunet P. Evidence for two distinct functional glucocorticoid receptors in teleost fish. J Mol Endocrinol 31: 141-156, 2003.

Bury NR and Sturm A. Evolution of the corticosteroid receptor signalling pathway in fish. Gen Comp Endocrinol 153(1-3): 47-56, 2007.

Charmandari E, Tsigos C and Chrousos G. Endocrinology of the stress response.
Ann Rev Physiol 67: 259-284, 2005.

Chen YY, Lu FI and Hwang PP. Comparisons of calcium regulation in fish larvae. J Exp Zool 295: 127-135, 2003.

Cheng W, Guo L, Zhang Z, Soo HM, Wen C, Wu W andPeng J. HNF factors form a network to regulate liver-enriched genes in zebrafish. Dev Biol 294(2):482-96, 2006.

Chesney RW, Mazess RB, Hamstra AJ, DeLuca HF and O'Reagan S. Reduction of serum-1, 25-dihydroxyvitamin-D3 in children receiving glucocorticoids. Lancet 312(8100): 1123-1125, 1978.

Chou MY, Hung JC, Wu LC, Hwang SP and Hwang PP. Isotocin controls ionregulation through regulating ionocyte progenitor differentiation and proliferation. Cell
Mol Life Sci 68(16):2797-809, 2011.

Cole MA, Kim PJ, Kalman BA and Spencer RL. Dexamethasone suppression of corticosteroid secretion: evaluation of the site of action by receptor measures and functional studies. Psychoneuroendocrinology 25: 151-167, 2000.

Colombe L, Fostier A, Bury N, Pakdel F and Guigen Y. A mineralocorticoid-like receptor in the rainbow trout, Oncorhynchus mykiss: cloning and characterization of its steroid binding domain. Steroids 65: 319 -328, 2000.

Cosman F, Nieves J, Herbert J, Shen V and Lindsay R. High-dose glucocorticoids in multiple sclerosis patients exert direct effects on the kidney and skeleton. J Bone Miner Res 9(7): 1097-1105, 1994.

Craig TA, Sommer S, Sussman CR, Grande JP and Kumar R. Expression and regulation of the vitamin D receptor in the zebrafish, Danio rerio. J Bone Miner Res 23(9):1486-96, 2008.

Datta HK, Ng WF, Walker JA, Tuck SP and Varanasi SS. The cell biology of bone metabolism. J Clin Pathol 61:577-587, 2008.

DeLuca HF. The vitamin D story: a collaborative effort of basic science and clinical medicine. FASEB J 2: 224-236, 1988.

Evans DH, Piermarini PM and Choe KP. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85: 97-177, 2005.

Flik, G and Perry SF. Cortisol stimulates whole body calcium uptake and the branchial calcium pump in freshwater rainbow trout. J Endocrinol 120: 75-82, 1989.

Funder JW. Mineralocorticoid receptors: distribution and activation. Heart Fail Rev 10: 15-22, 2005.

Greenwood AK, Butler PC, White RB, DeMarco U, Pearce D and Fernald RD. Multiple corticosteroid receptors in a teleost fish: distinct sequences, expression patterns, and transcriptional activities. Endocrinology 144: 4226 -4236, 2003.

MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD, Selznick SH, Dominguez CE and Jurutka PW. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. Bone Miner Res 13: 325-349, 1998.

Hayes ME, Guilland-Cumming DF, Russell RG and Henderson IW.
Metabolism of 25-hydroxycholecalciferol in a teleost fish, the rainbow trout
(Salmo gairdneri). Gen Comp Endocrinol 64:143-150, 1986.

Henry HL. The 25-hydroxyvitamin D3 1a-hydroxylase. In: Feldman D,
Glorieux FH, Pike JW (eds) Vitamin D. Academic Press, San Diego, CA, pp
57- 68, 1997.

Hoenderop JG, Nilius B and Bindels RJ. Calcium absorption across epithelia. Physiol Rev 85: 373-422, 2005.

Holick MF. Vitamin D Deficiency. N Engl J Med 357: 266-281, 2007.

Howarth DL, Law SH, Barnes B, Hall JM, Hinton DE, Moore L, Maglich JM, Moore JT and Kullman SW. Paralogous vitamin D receptors in teleosts: transition of nuclear receptor function. Endocrinology 149(5): 2411-2422, 2008.

Huybers S, Naber TH, Bindels RJ and Hoenderop JG. Prednisolone-induced Ca2+ malabsorption is caused by diminished expression of the epithelial Ca2+ channel TRPV6. Am J Physiol Gastrointest Liver Physiol 292(1): G92-97, 2007.

Hwang PP and Lee TH. New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148(3): 479-97, 2007.

Hwang PP. Ion uptake and acid secretion in zebrafish (Danio rerio). J Exp Biol 212(11): 1745-1752, 2009.

Hwang PP and Perry SF. Ionic and acid-base regulation. In: Pery SF, Ekker M,
Farrell AP, Brauner CJ (ed) Zebrafish: A Fish Physiology, 1st ed. vol.29. Academic Press, New York, NY, USA. pp. 311-344, 2010.

Hwang PP, Lee TH and Lin LY. Ion Regulation in Fish Gills: Recent Progress in the Cellular and Molecular Mechanisms. Am J Physiol Regul Integr Comp Physiol 301: R28-R47, 2011.

Jiang JQ, Wang DS, Senthilkumaran B, Kobayashi T, Kobayashi HK, Yamaguchi A, Ge W, Young G and Nagahama Y. Isolation, characterization and expression of 11beta-hydroxysteroid dehydrogenase type 2 cDNAs from the testes of Japanese eel (Anguilla japonica) and Nile tilapia (Oreochromis niloticus). J Mol Endocrinol 31(2): 305-315, 2003.

Kelly SP and Wood CM. Cortisol stimulates calcium transport across cultured gill epithelia from freshwater rainbow trout. In Vitro Cell Dev Biol Anim 44(3-4): 96-104, 2008.

Kiilerich P, Kristiansen K and Madsen SS. Cortisol regulation of ion transporter mRNA in Atlantic salmon gill and the effect of salinity on the signaling pathway. J Endocrinol 194(2): 417-427, 2007.

Kim MH, Lee GS, Jung EM, Choi KC, Oh GT and Jeung EB. Dexamethasone differentially regulates renal and duodenal calcium-processing genes in calbindin-D9k and -D28k knockout mice. Exp Physiol 94(1): 138-151, 2009.

Krasowski MD, Ai N, Hagey LR, Kollitz EM, Kullman SW, Reschly EJ and Ekins S. The evolution of farnesoid X, vitamin D, and pregnane X receptors: insights from the green-spotted pufferfish (Tetraodon nigriviridis) and other non-mammalian species. BMC Biochem 12:5, 2011.

Kusakabe M, Nakamura I and Young G. 11beta-hydroxysteroid dehydrogenase complementary deoxyribonucleic acid in rainbow trout: cloning, sites of expression, and seasonal changes in gonads. Endocrinology 144(6): 2534-2545, 2003.

Lafont AG, Wang YF, Chen GD, Liao BK, Tseng YC, Huang CJ and Hwang PP. Involvement of calcitonin and its receptor in the control of calcium-regulating genes and calcium homeostasis in zebrafish (Danio rerio). J Bone Miner Res 26(5):1072-83, 2011.

Lechner D, Kállay E and Cross HS. 1alpha,25-dihydroxyvitamin D3 downregulates CYP27B1 and induces CYP24A1 in colon cells. Mol Cell Endocrinol 263(1-2):55-64, 2007.

Liao BK, Deng AN, Chen SC, Chou MY and Hwang PP. Expression and water calcium dependence of calcium transporter isoforms in zebrafish gill mitochondrion-rich cells. BMC Genomics 8: 354, 2007.

Lin CH, Tsai IL, Su CH, Tseng DY and Hwang PP. Reverse effect of mammalian hypocalcemic cortisol in fish: cortisol stimulates Ca2+ uptake via glucocorticoid receptor-mediated vitamin D3 metabolism. PLoS One 6(8):e23689, 2011.

Lin GR, Weng CF, Wang JI, Hwang PP. Effects of cortisol on ion regulation in developing tilapia (Oreochromis mossambicus) larvae on seawater adaptation. Physiol Biochem Zool 72(4): 397-404, 1999.

Lock EJ, Ornsrud R, Aksnes L, Spanings FA, Waagbo R and Flik G. The vitamin D receptor and its ligand 1alpha,25-dihydroxyvitamin D3 in Atlantic salmon (Salmo salar). J Endocrinol 193: 459-471, 2007.

Lukert BP and Raisz LG. Glucocorticoid-induced osteoporosis: patho-
genesis and management. Ann Intern Med 112: 352–364, 1990.

Lynch M and Force A. The probability of duplicate gene preservation by subfunctionalization. Genetics 154(1):459-73, 2000.

Mathew LK, Sengupta S, Kawakami A, Andreasen EA, Löhr CV, Loynes CA, Renshaw SA, Peterson RT and Tanguay RL. Unraveling tissue regeneration pathways using chemical genetics. J Biol Chem 282(48): 35202-35210, 2007.

Maule AG and Schreck CB. Stress and cortisol treatment changed affinity and number of glucocorticoid receptors in leukocytes and gill of coho salmon. Gen Comp Endocrinol 84(1): 83-93, 1991.

McCormick SD and Bradshaw D.Hormonal control of salt and water balance in vertebrates. Gen Comp Endocrinol 147(1): 3-8, 2006.

McGowan JE, Sysyn G, Petersson KH, Sadowska GB, Mishra OP, Delivoria-Papadopoulos M and Stonestreet BS. Effect of dexamethasone treatment on maturational changes in the NMDA receptor in sheep brain. J Neurosci 20(19): 7424-9, 2000.

McLaughlin F, Mackintosh J, Hayes BP, McLaren A, Uings IJ, Salmon P, Humphreys J, Meldrum E and Farrow SN. Glucocorticoid-induced osteopenia in the mouse as assessed by histomorphometry, microcomputed tomography, and biochemical markers. Bone 30: 924-930, 2002.

Mommsen TP, Vijayan MM and Moon TW. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9: 211-268, 1999.

Morris HA, Need AG, O'Loughlin PD, Horowitz M, Bridges A and Nordin BE. Malabsorption of calcium in corticosteroid-induced osteoporosis. Calcif Tissue Int 46(5): 305-308, 1990.

Murayama A, Takeyama K, Kitanaka S, Kodera Y, Kawaguchi Y, Hosoya T and Kato S. Positive and negative regulations of the renal 25-hydroxyvitamin D3 1alpha-hydroxylase gene by parathyroid hormone, calcitonin, and 1alpha,25(OH)2D3 in intact animals. Endocrinology 140(5):2224-31, 1999.

Murayama A, Kim MS, Yanagisawa J, Takeyama K and Kato S. Transrepression by a liganded nuclear receptor via a bHLH activator through co-regulator switching. EMBO J 23(7):1598-608, 2004.

Nelson DR. Comparison of P450s from human and fugu: 420 million years of vertebrate P450 evolution. Arch Biochem Biophys 409: 18-24, 2003.
Omdahl JL, Morris HA and May BK. Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. Annu Rev Nutr 22:139-66, 2002.

Pan TC, Liao BK, Huang CJ, Lin LY, Hwang PP. Epithelial Ca2+ channel expression and Ca2+ uptake in developing zebrafish. Am J Physiol Regul Integr Comp Physiol 289(4): R1202-1211, 2005.

Patschan D, Loddenkemper K, Buttgereit F. Molecular mechanisms of glucocorticoid -induced osteoporosis. Bone 29: 498-505, 2001.
Peacock M. Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5(Suppl. 1):S23-S30, 2010.

Perry SF, Goss GG and Fenwick JC. Interrelationships between gill chloride cell morphology and calcium uptake in freshwater teleosts. Fish Physiol Biochem 10: 327-337, 1992.

Pottinger TG and Pickering AD. The effect of cortisol administration on hepatic and plasma estradiol-binding capacity in immature female rainbow trout (Oncorhynchus mykiss).Gen Comp Endocrinol 80(2): 264-273, 1990.

Prosser DE and Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem 29(12):664-73, 2004.

Prummel MF, Wiersinga WM, Lips P, Sanders GT and Sauerwein HP. The course of biochemical parameters of bone turnover during treatment with corticosteroids. J Clin Endocrinol Metab 72(2): 382-386, 1991.

Qiu A and Hogstrand C. Functional characterisation and genomic analysis of an epithelial calcium channel (ECaC) from pufferfish, Fugu rubripes. Gene 342(1): 113-123, 2004.

Reschly EJ, Bainy AC, Mattos JJ, Hagey LR, Bahary N, Mada SR, Ou J, Venkataramanan R and Krasowski MD. Functional evolution of the vitamin D and pregnane X receptors. BMC Evol Biol 7:222, 2007.

Schaaf MJ, Champagne D, van Laanen IH, van Wijk DC, Meijer AH, Meijer OC, Spaink HP and Richardson MK. Discovery of a functional glucocorticoid receptor beta-isoform in zebrafish. Endocrinology 149(4): 1591-1599, 2008.

Seeman E, Kumar R, Hunder GG, Scott M, Heath H 3rd and Riggs BL. Production, degradation, and circulating levels of 1,25-dihydroxyvitamin D3 in health and in chronic glucocorticoid excess. J Clin Invest 66(4): 664-669, 1980.

Shahsavarani A and Perry SF. Hormonal and environmental regulation of epithelial calcium channel in gill of rainbow trout. Am J Physiol Regul Integr Comp Physiol 291: R1490-R1498, 2006.

Shrimpton JM and Randall DJ. Downregulation of corticosteroid receptors in gills of coho salmon due to stress and cortisol treatment. Am J Physiol 267: R432-438, 1994.

Shultz TD, Bollman S and Kumar R. Decreased intestinal calcium absorption in vivo and normal brush border membrane vesicle calcium uptake in cortisol-treated chickens: evidence for dissociation of calcium absorption from brush border vesicle uptake. Proc Natl Acad Sci U S A 79(11): 3542-3546, 1982.

Sturm A, Bury NR, Dengreville L, Fagart J, Flouriot G, Rafestin-Oblin ME and Prunet P. 11-Deoxycorticosterone is a potentagonist of the rainbow trout (Oncorhynchus mykiss) mineralocorticoid receptor. Endocrinology 146: 47-55, 2005.

Sundell K, Norman AW and Björnsson BT. 1,25(OH)2 vitamin D3 increases ionized plasma calcium concentrations in the immature Atlantic cod (Gadus morhua). Gen Comp Endocrinol 91(3): 344-351, 1993.

Swarup K, Das VK and Norman AW. Dose-dependent vitamin D3 and 1,25-dihydroxyvitamin D3-induced hypercalcemia and hyperphosphatemia in male cyprinoid Cyprinus carpio. Comp Biochem Physiol A Physiol 100(2): 445-447, 1991.

Takahashi H, Sakamoto T, Hyodo S, Shepherd BS, Kaneko T and Grau EG. Expression of glucocorticoid receptor in the intestine of a euryhaline teleost, the Mozambique tilapia (Oreochromis mossambicus): effect of seawater exposure and cortisol treatment. Life Sci 78(20): 2329-2335, 2006.

Takeuchi A, Okano T and Kobayashi T. The existence of 25-hydroxyvitaminD3-1 alpha-hydroxylase in the liver of carp and bastard halibut. Life Sci 48 275-282, 1991.

Trapp T and Holsboer F. Heterodimerization between mineralocorticoid and glucocorticoid receptors increases the functional diversity of corticosteroid
action. Trends Pharmacol Sci 17: 145-149, 1996.

Tseng DY, Chou MY, Tseng YC, Hsiao CD, Huang CJ, Kaneko T and Hwang PP. Effects of stanniocalcin 1 on calcium uptake in zebrafish (Danio rerio) embryo. Am J Physiol Regul Integr Comp Physiol 296(3): R549-557, 2009.

Vangheluwe P, Sepulveda MR, Missiaen L, Raeymaekers L, Wuytack F and Vanoevelen J. Intracellular Ca2+ and Mn2+-transport ATPases. Chem Rev 109: 4733-4759, 2009.
Vanoevelen J, Janssens A, Huitema LF, Hammond CL, Metz JR, Flik G, Voets T and Schulte-Merker S.Trpv5/6 is vital for epithelial calcium uptake and bone formation. FASEB J 25(9):3197-207, 2011.

Vennekens R, Hoenderop JG, Prenen J, Stuiver M, Willems PH, Droogmans G, Nilius B and Bindels RJ. Permeation and gating properties of the novel epithelial Ca2+ channel. J Biol Chem 275: 3963-3969, 2000.

Weisbart M, Chakraborti PK, Gallivan G and Eales JG. Dynamics of cortisol receptor activity in the gills of the brook trout, Salvelinus fontinalis, during seawater adaptation. Gen Comp Endocrinol 68(3): 440-448, 1987.

Whitfield GK, Dang HT, Schluter SF, Bernstein RM, Bunag T, Manzon LA, Hsieh G, Dominguez CE, Youson JH, Haussler MR and Marchalonis JJ. Cloning of a functional vitamin D receptor from the lamprey (Petromyzon marinus), an ancient vertebrate lacking a calcified skeleton and teeth. Endocrinology 144(6):2704-16, 2003.

Witten PE and Huysseune A. A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev Camb Philos Soc 84:315-346, 2009.

Zierold C, Mings JA and DeLuca HF. Regulation of 25-hydroxyvitamin D3-24-hydroxylase mRNA by 1,25-dihydroxyvitamin D3 and parathyroid hormone. J Cell Biochem 88(2):234-7, 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊