跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/14 17:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳珮琇
研究生(外文):Pei-Hsiu Chen
論文名稱:利用蛋白質體與生物資訊探討太平洋紫杉醇對毛囊毛乳突細胞之影響
論文名稱(外文):Impact of taxol on dermal papilla cells — A proteomics and bioinformatics analysis
指導教授:稅晧靄
指導教授(外文):Hao-Ai Shui
口試委員:周雨青王治元稅晧靄陳翰民李建興
口試委員(外文):Yu-Ching ChouChih-Yuan WangHao-Ai ShuiHan-Min ChenChieu-Hsig Lee
口試日期:2012-02-04
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:79
中文關鍵詞:毛乳突細胞太平洋紫杉醇蛋白質體學生物資訊學
外文關鍵詞:dermal papilla cellstaxolproteomicsbioinformatics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:707
  • 評分評分:
  • 下載下載:125
  • 收藏至我的研究室書目清單書目收藏:1
毛乳突調控毛髮生長及毛囊週期循環並影響落髮,是在毛髮生理機能上扮演關鍵性角色。至目前為止,毛乳突細胞內的蛋白質表現仍不清楚,過去並無蛋白質體學相關研究針對該細胞進行系統性分析。此外,太平洋紫杉醇是臨床上廣泛使用於治療癌症的化療藥物,會引起嚴重的落髮,雖然太平洋紫杉醇主要是攻擊分裂快速的上皮細胞,我們的初步結果顯示,太平洋紫杉醇也會造成毛乳突細胞的死亡,但是其機轉仍不清楚。
這篇研究主要是利用生物化學、蛋白質體學以及生物資訊學三方面技術去探討毛乳突細胞之蛋白質組成與表現,並探討太平洋紫杉醇造成之毛乳突細胞產生細胞死亡之機轉。我們的結果顯示,毛乳突細胞表現之蛋白質涵蓋細胞骨架相關、代謝相關、發育相關、蛋白質運輸相關、免疫相關、蛋白質分解相關、幹細胞功能相關、細胞生長相關、細胞黏著相關、毛髮生長相關、血管新生相關、訊息傳導相關、以及蛋白質折疊相關等蛋白質,這些鑑定之蛋白質資料庫,可作為日後相關研究毛乳突細胞的基礎。此外,處理太平洋紫杉醇之毛乳突細胞,可以觀察到caspase 3 活化、DNA 碎裂情形以及細胞凋亡小體的出現等細胞凋亡有關之現象,且毛乳突細胞凋亡之程度與太平洋紫杉醇劑量呈正相關性,故證明細胞凋亡是該細胞死亡之主要機轉。此外我們用蛋白質體學以及生物資訊學方法探討太平洋紫杉醇對毛乳突細胞作用的影響,發現太平洋紫杉醇會影響毛乳突細胞內與鈣離子調控之反應、小泡運輸、蛋白質折疊、還原解毒以及代謝有關之蛋白質表現改變,這些改變可以進一步解釋該細胞凋亡的分子機制。本研究的結果對於掉髮之機轉提供了重要的線索,做為未來治療與預防掉毛乳突細胞凋亡造成之掉髮有所貢獻。

關鍵字:毛乳突細胞、太平洋紫杉醇、蛋白質體學、生物資訊學

Dermal papilla (DP) play a key physiological role in regulating hair growth, hair cycle and hair loss. However, the composition and expression of protein in DP cellls is still unknown. So far, proteomics and expression systematical analysis of the protein composition in DP cells is still unavailable. In addition, although it is known that taxol, a widely used chemotherapy drug, can induce serious alopecia (hair loss), the detailed mechanism underlying taxol-induced alopecia is also unclear. Our preliminary study showed that taxol can cause death of DP cells, despite that the rapidly dividing keratinocytes are the major target of taxol. However , the mechanism underlying taxol-induced death of DP cells is obscure till now.
In this study, we used biochemical, proteomics and bioinformatics approaches to explore the protein composition and expression in DP cells, and also investigate the mechanism of taxol-induced death of the cells. Our data showed that proteins expressed in DP cells can be classified to several functions, including cytoskeleton-related, metabolism, development, protein transport, immune-related, protein degradation, stem cell-related, cell growth, cell adhesion, hair growth, angiogenesis, signal transduction and protein folding. This protein information can serve as a database for referance of future DP cells-related studies. In terms of taxol, our data showed that taxol can induce caspase 3 activation, DNA fragmentation, and appearance of apoptotic bodies in DP cells in a concentration-dependent manner, suggesting that apoptosis is a main mechanism underlying the taxol-induced death of the cells. Furthermore, our proteomics and bioinformatics analysis revealed that taxol can impact on expression of proteins involved in Ca2+-regulated biological process, vesicles transport, protein folding, reductive detoxification, and biomolecules metabolism; this finding can further provide molecular mechanism of taxol-induced apoptosis in DP cells.
Our finding might give an insight into the mechanism underlying taxol-induced alopecia, and might be helpful for prevention and therapy of the illness.

Key words: dermal papilla cells, taxol, proteomics, bioinformatics

目錄•••••••••••••••••••••••••••••••••••••••••••••••••••••••Ⅰ
表目錄•••••••••••••••••••••••••••••••••••••••••••••••••••••IV
圖目錄•••••••••••••••••••••••••••••••••••••••••••••••••••••V
中文摘要•••••••••••••••••••••••••••••••••••••••••••••••••••VI
英文摘要••••••••••••••••••••••••••••••••••••••••••••••••••VII
縮寫表••••••••••••••••••••••••••••••••••••••••••••••••••••VIII
第 一 章 緒 言••••••••••••••••••••••••••••••••••••••••••••••1
一、毛髮發育與週期••••••••••••••••••••••••••••••••••••••1
二、毛乳突細胞在毛髮生長與發育扮演的角色••••••••••••••••2
三、毛乳突細胞目前的研究與應用••••••••••••••••••••••••••3
四、化學治療落髮與毛乳突細胞的關係仍不清楚••••••••••••••5
五、太平洋紫杉醇••••••••••••••••••••••••••••••••••••••••7
六、系統生物學,蛋白質體學以及生物資訊學••••••••••••••••7
七、研究目的••••••••••••••••••••••••••••••••••••••••••••9
第 二 章 材料與方法••••••••••••••••••••••••••••••••••••••••10
一、試劑與塑膠耗材••••••••••••••••••••••••••••••••••••••10
二、太平洋紫杉醇溶液的配製••••••••••••••••••••••••••••••10
三、毛乳突細胞初代培養••••••••••••••••••••••••••••••••••10
四、毛乳突細胞鹼性磷酸酶組織染色•••••••••••••••••••••••11
五、藥物處理•••••••••••••••••••••••••••••••••••••••••••12
六、劉氏染色•••••••••••••••••••••••••••••••••••••••••••12
七、西方點墨法•••••••••••••••••••••••••••••••••••••••••13
八、DNA碎裂分析•••••••••••••••••••••••••••••••••••••••14
九、樣品配製與二維電泳分析•••••••••••••••••••••••••••••14
十、電泳膠染色,蛋白質點偵測、定量與比較•••••••••••••••15
十一、膠內胰蛋白酶切割,MADLI-TOF MS分析,LC-MS/MS質譜儀分析•••••••••••••••••••••••••••••••••••••••••••16
十二、蛋白質鑑定與資料庫分析•••••••••••••••••••••••••••18
十三、PANTHER蛋白質分類分析•••••••••••••••••••••••••••18
十四、蛋白質交互作用分析•••••••••••••••••••••••••••••••18
十五、資料統計•••••••••••••••••••••••••••••••••••••••••19
第 三 章 結 果•••••••••••••••••••••••••••••••••••••••••••••20
一、毛乳突細胞體外培養•••••••••••••••••••••••••••••••••20
二、毛乳突細胞內蛋白質資料庫之建立•••••••••••••••••••••20
三、太平洋紫杉醇誘發毛乳突細胞之細胞凋亡••••••••••••••••21
四、二維電泳膠顯示太平洋紫杉醇造成毛乳突細胞蛋白質表現改變•••••••••••••••••••••••••••••••••••••••••••••••••22
五、太平洋紫杉醇對毛乳突細胞生物網路影響之分析••••••••••24
第 四 章 討 論•••••••••••••••••••••••••••••••••••••••••••••25
第 五 章 結 論•••••••••••••••••••••••••••••••••••••••••••••31
第 六 章 參考文獻••••••••••••••••••••••••••••••••••••••••••32

1.Yang CC, Cotsarelis G: Review of hair follicle dermal cells. J Dermatol Sci 2010, 57:2-11.
2.Jahoda C, Oliver RF: The growth of vibrissa dermal papilla cells in vitro. Br J Dermatol 1981, 105:623-627.
3.Handjiski BK, Eichmuller S, Hofmann U, Czarnetzki BM, Paus R: Alkaline phosphatase activity and localization during the murine hair cycle. Br J Dermatol 1994, 131:303-310.
4.McElwee KJ, Kissling S, Wenzel E, Huth A, Hoffmann R: Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. J Invest Dermatol 2003, 121:1267-1275.
5.Stenn K, Parimoo S, Zheng Y, Barrows T, Boucher M, Washenik K: Bioengineering the hair follicle. Organogenesis 2007, 3:6-13.
6.Bahta AW, Farjo N, Farjo B, Philpott MP: Premature senescence of balding dermal papilla cells in vitro is associated with p16(INK4a) expression. J Invest Dermatol 2008, 128:1088-1094.
7.Kitagawa T, Matsuda K, Inui S, Takenaka H, Katoh N, Itami S, Kishimoto S, Kawata M: Keratinocyte growth inhibition through the modification of Wnt signaling by androgen in balding dermal papilla cells. J Clin Endocrinol Metab 2009, 94:1288-1294.
8.Kwack MH, Sung YK, Chung EJ, Im SU, Ahn JS, Kim MK, Kim JC: Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes. J Invest Dermatol 2008, 128:262-269.
9.Philpott MP, Sanders DA, Bowen J, Kealey T: Effects of interleukins, colony-stimulating factor and tumour necrosis factor on human hair follicle growth in vitro: a possible role for interleukin-1 and tumour necrosis factor-alpha in alopecia areata. Br J Dermatol 1996, 135:942-948.
10.Konig A, Happle R, Hoffmann R: IFN-gamma-induced HLA-DR but not ICAM-1 expression on cultured dermal papilla cells is downregulated by TNF-alpha. Arch Dermatol Res 1997, 289:466-470.
11.Stenn KS, Cotsarelis G: Bioengineering the hair follicle: fringe benefits of stem cell technology. Curr Opin Biotechnol 2005, 16:493-497.
12.Cotsarelis G, Sun TT, Lavker RM: Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 1990, 61:1329-1337.
13.Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM: Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 2000, 102:451-461.
14.Cotsarelis G: Epithelial stem cells: a folliculocentric view. J Invest Dermatol 2006, 126:1459-1468.
15.Hibberts NA, Messenger AG, Randall VA: Dermal papilla cells derived from beard hair follicles secrete more stem cell factor (SCF) in culture than scalp cells or dermal fibroblasts. Biochem Biophys Res Commun 1996, 222:401-405.
16.Lako M, Armstrong L, Cairns PM, Harris S, Hole N, Jahoda CA: Hair follicle dermal cells repopulate the mouse haematopoietic system. J Cell Sci 2002, 115:3967-3974.
17.Jahoda CA, Whitehouse J, Reynolds AJ, Hole N: Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp Dermatol 2003, 12:849-859.
18.Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S, Hoffman RM: Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A 2005, 102:17734-17738.
19.Richardson GD, Arnott EC, Whitehouse CJ, Lawrence CM, Reynolds AJ, Hole N, Jahoda CA: Plasticity of rodent and human hair follicle dermal cells: implications for cell therapy and tissue engineering. J Investig Dermatol Symp Proc 2005, 10:180-183.
20.Hunt DP, Morris PN, Sterling J, Anderson JA, Joannides A, Jahoda C, Compston A, Chandran S: A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin. Stem Cells 2008, 26:163-172.
21.Fernandes KJ, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabe-Heider F, Biernaskie J, Junek A, Kobayashi NR, Toma JG, et al: A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 2004, 6:1082-1093.
22.Enshell-Seijffers D, Lindon C, Morgan BA: The serine protease Corin is a novel modifier of the Agouti pathway. Development 2008, 135:217-225.
23.Ito Y, Hamazaki TS, Ohnuma K, Tamaki K, Asashima M, Okochi H: Isolation of murine hair-inducing cells using the cell surface marker prominin-1/CD133. J Invest Dermatol 2007, 127:1052-1060.
24.Iida M, Ihara S, Matsuzaki T: Hair cycle-dependent changes of alkaline phosphatase activity in the mesenchyme and epithelium in mouse vibrissal follicles. Dev Growth Differ 2007, 49:185-195.
25.Jahoda CA, Reynolds AJ, Chaponnier C, Forester JC, Gabbiani G: Smooth muscle alpha-actin is a marker for hair follicle dermis in vivo and in vitro. J Cell Sci 1991, 99 ( Pt 3):627-636.
26.Kristensen DB, Inamatsu M, Matsuzaki T, Yoshizato K: Analysis of the rat dermal papilla cell proteome. Exp Dermatol 1999, 8:339-340.
27.Jimenez JJ, Roberts SM, Mejia J, Mauro LM, Munson JW, Elgart GW, Connelly EA, Chen Q, Zou J, Goldenberg C, Voellmy R: Prevention of chemotherapy-induced alopecia in rodent models. Cell Stress Chaperones 2008, 13:31-38.
28.Botchkarev VA: Molecular mechanisms of chemotherapy-induced hair loss. J Investig Dermatol Symp Proc 2003, 8:72-75.
29.Katz-Jaffe MG, McReynolds S, Gardner DK, Schoolcraft WB: The role of proteomics in defining the human embryonic secretome. Mol Hum Reprod 2009, 15:271-277.
30.Ramagli L: Quantifying protein in 2-D PAGE solubilization buffer. In 2-D Proteome analysis protocols. Edited by Link AJ. Totowa, NJ: Humana Press 1999, 99-103.
31.Jahoda CA, Horne KA, Oliver RF: Induction of hair growth by implantation of cultured dermal papilla cells. Nature 1984, 311:560-562.
32.Chondrogianni N, Gonos ES: Proteasome activation as a novel antiaging strategy. IUBMB Life 2008, 60:651-655.
33.Lundgren J, Masson P, Mirzaei Z, Young P: Identification and characterization of a Drosophila proteasome regulatory network. Mol Cell Biol 2005, 25:4662-4675.
34.Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H: The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J 2001, 20:4935-4943.
35.Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, Chang W, Meng Z, Cheung P, Ji H, et al: Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 2009, 460:66-72.
36.McKay RM, Peters JM, Graff JM: The casein kinase I family in Wnt signaling. Dev Biol 2001, 235:388-396.
37.Jung H, Kim HJ, Lee SK, Kim R, Kopachik W, Han JK, Jho EH: Negative feedback regulation of Wnt signaling by Gbetagamma-mediated reduction of Dishevelled. Exp Mol Med 2009, 41:695-706.
38.Jablonska E, Markart P, Zakrzewicz D, Preissner KT, Wygrecka M: Transforming growth factor-beta1 induces expression of human coagulation factor XII via Smad3 and JNK signaling pathways in human lung fibroblasts. J Biol Chem 2010, 285:11638-11651.
39.Hokeness K, Qiu LH, Vezeridis M, Yan BF, Mehta S, Wan YS: IFN-gamma enhances paclitaxel-induced apoptosis that is modulated by activation of caspases 8 and 3 with a concomitant down regulation of the AKT survival pathway in cultured human keratinocytes. Oncol Rep 2005, 13:965-969.
40.Yeung TK, Germond C, Chen X, Wang Z: The mode of action of taxol: apoptosis at low concentration and necrosis at high concentration. Biochem Biophys Res Commun 1999, 263:398-404.
41.Gangemi RM, Tiso M, Marchetti C, Severi AB, Fabbi M: Taxol cytotoxicity on human leukemia cell lines is a function of their susceptibility to programmed cell death. Cancer Chemother Pharmacol 1995, 36:385-392.
42.Balasubramani M, Nakao C, Uechi GT, Cardamone J, Kamath K, Leslie KL, Balachandran R, Wilson L, Day BW, Jordan MA: Characterization and detection of cellular and proteomic alterations in stable stathmin-overexpressing, taxol-resistant BT549 breast cancer cells using offgel IEF/PAGE difference gel electrophoresis. Mutat Res 2011, 722:154-164.
43.Bull VH, Fargestad EM, Strozynski M, Thiede B: Temporal proteome profiling of taxol-induced mitotic arrest and apoptosis. Electrophoresis 2010, 31:1873-1885.
44.Chuthapisith S, Layfield R, Kerr ID, Hughes C, Eremin O: Proteomic profiling of MCF-7 breast cancer cells with chemoresistance to different types of anti-cancer drugs. Int J Oncol 2007, 30:1545-1551.
45.Cicchillitti L, Di Michele M, Urbani A, Ferlini C, Donati MB, Scambia G, Rotilio D: Comparative proteomic analysis of paclitaxel sensitive A2780 epithelial ovarian cancer and its resistant counterpart A2780TC1 by 2D-DIGE: the role of ERp57. J Proteome Res 2009, 8:1902-1912.
46.Di Michele M, Della Corte A, Cicchillitti L, Del Boccio P, Urbani A, Ferlini C, Scambia G, Donati MB, Rotilio D: A proteomic approach to paclitaxel chemoresistance in ovarian cancer cell lines. Biochim Biophys Acta 2009, 1794:225-236.
47.Dowling P, Meleady P, Dowd A, Henry M, Glynn S, Clynes M: Proteomic analysis of isolated membrane fractions from superinvasive cancer cells. Biochim Biophys Acta 2007, 1774:93-101.
48.Kozielski F, Skoufias DA, Indorato RL, Saoudi Y, Jungblut PR, Hustoft HK, Strozynski M, Thiede B: Proteome analysis of apoptosis signaling by S-trityl-L-cysteine, a potent reversible inhibitor of human mitotic kinesin Eg5. Proteomics 2008, 8:289-300.
49.Lee DH, Chung K, Song JA, Kim TH, Kang H, Huh JH, Jung SG, Ko JJ, An HJ: Proteomic identification of paclitaxel-resistance associated hnRNP A2 and GDI 2 proteins in human ovarian cancer cells. J Proteome Res 2010, 9:5668-5676.
50.Lee KH, Yim EK, Kim CJ, Namkoong SE, Um SJ, Park JS: Proteomic analysis of anti-cancer effects by paclitaxel treatment in cervical cancer cells. Gynecol Oncol 2005, 98:45-53.
51.Murphy L, Henry M, Meleady P, Clynes M, Keenan J: Proteomic investigation of taxol and taxotere resistance and invasiveness in a squamous lung carcinoma cell line. Biochim Biophys Acta 2008, 1784:1184-1191.
52.Sun QL, Sha HF, Yang XH, Bao GL, Lu J, Xie YY: Comparative proteomic analysis of paclitaxel sensitive A549 lung adenocarcinoma cell line and its resistant counterpart A549-Taxol. J Cancer Res Clin Oncol 2011, 137:521-532.
53.Wilmes A, Chan A, Rawson P, William Jordan T, Miller JH: Paclitaxel effects on the proteome of HL-60 promyelocytic leukemic cells: comparison to peloruside A. Invest New Drugs 2012, 30:121-129.
54.Wilmes A, Rawson P, Peng L, McLauchlan D, Northcote PT, Jordan TW, Miller JH: Effects of the microtubule stabilizing agent peloruside A on the proteome of HL-60 cells. Invest New Drugs 2011, 29:544-553.
55.Yim EK, Bae JS, Lee SB, Lee KH, Kim CJ, Namkoong SE, Um SJ, Park JS: Proteome analysis of differential protein expression in cervical cancer cells after paclitaxel treatment. Cancer Res Treat 2004, 36:395-399.
56.Chung CY, Koprich JB, Hallett PJ, Isacson O: Functional enhancement and protection of dopaminergic terminals by RAB3B overexpression. Proc Natl Acad Sci U S A 2009, 106:22474-22479.
57.Tasaka K, Masumoto N, Mizuki J, Ikebuchi Y, Ohmichi M, Kurachi H, Miyake A, Murata Y: Rab3B is essential for GnRH-induced gonadotrophin release from anterior pituitary cells. J Endocrinol 1998, 157:267-274.
58.Yu DW, Yang T, Sonoda T, Gong Y, Cao Q, Gaffney K, Jensen PJ, Freedberg IM, Lavker RM, Sun TT: Osteopontin gene is expressed in the dermal papilla of pelage follicles in a hair-cycle-dependent manner. J Invest Dermatol 2001, 117:1554-1558.
59.Yu M, Kissling S, Freyschmidt-Paul P, Hoffmann R, Shapiro J, McElwee KJ: Interleukin-6 cytokine family member oncostatin M is a hair-follicle-expressed factor with hair growth inhibitory properties. Exp Dermatol 2008, 17:12-19.
60.Huang Y, Jin Y, Yan CH, Yu Y, Bai J, Chen F, Zhao YZ, Fu SB: Involvement of Annexin A2 in p53 induced apoptosis in lung cancer. Mol Cell Biochem 2008, 309:117-123.
61.Magrys A, Anekonda T, Ren G, Adamus G: The role of anti-alpha-enolase autoantibodies in pathogenicity of autoimmune-mediated retinopathy. J Clin Immunol 2007, 27:181-192.
62.Corcoran CA, Huang Y, Sheikh MS: The regulation of energy generating metabolic pathways by p53. Cancer Biol Ther 2006, 5:1610-1613.
63.Ellis EM: Reactive carbonyls and oxidative stress: potential for therapeutic intervention. Pharmacol Ther 2007, 115:13-24.
64.Pandolfi PP, Sonati F, Rivi R, Mason P, Grosveld F, Luzzatto L: Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J 1995, 14:5209-5215.
65.Adachi K, Watanabe Y, Inouye K: Activity of glucose-6-phosphate 1-dehydrogenase in hair follicles with male-pattern alopecia. Biosci Biotechnol Biochem 1999, 63:2219-2221.
66.Shringarpure R, Grune T, Mehlhase J, Davies KJ: Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem 2003, 278:311-318.
67.Kurepa J, Smalle JA: To misfold or to lose structure?: Detection and degradation of oxidized proteins by the 20S proteasome. Plant Signal Behav 2008, 3:386-388.
68.Byrd CA, Bornmann W, Erdjument-Bromage H, Tempst P, Pavletich N, Rosen N, Nathan CF, Ding A: Heat shock protein 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide. Proc Natl Acad Sci U S A 1999, 96:5645-5650.
69.Tanaka Y, Fujiwara K, Tanaka H, Maehata K, Kohno I: Paclitaxel inhibits expression of heat shock protein 27 in ovarian and uterine cancer cells. Int J Gynecol Cancer 2004, 14:616-620.
70.Kobayashi Y, Kume A, Li M, Doyu M, Hata M, Ohtsuka K, Sobue G: Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J Biol Chem 2000, 275:8772-8778.
71.Sugimura M, Sagae S, Ishioka S, Nishioka Y, Tsukada K, Kudo R: Mechanisms of paclitaxel-induced apoptosis in an ovarian cancer cell line and its paclitaxel-resistant clone. Oncology 2004, 66:53-61.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊