跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 02:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:金慧潔
研究生(外文):Chin, Hui Chieh
論文名稱:氯化亞鈷對人類臍帶間質幹細胞的保護機制
論文名稱(外文):Explore Cobalt Chloride Protective Effect on Human Umbilical Cord Mesenchymal Stem Cells
指導教授:蕭嘉陽
指導教授(外文):Shiau, Chia Yang
口試委員:白壽雄,林昌棋
口試日期:2012-06-14
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:69
中文關鍵詞:人類臍帶間質幹細胞、氯化亞鈷、過氧化氫
外文關鍵詞:Human umbilical mensenchymal stem cells、Cobalt chloride、Hydrogen peroxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人類臍帶間質幹細胞 (human umbilical mensenchymal stem cells, hUMSCs),屬於具有高度的自我更新能力以及多向分化潛能的幹細胞。近年來研究發現將幹細胞培養在缺氧環境中可加快幹細胞的群落形成能力、延長增生時間和極佳地化學趨性。缺氧環境下會引發缺氧誘導轉錄因子 (hypoxia inducible factors, HIFs) 之表達進而調控約兩百多種基因表現,其中HIF-2alpha被指出在癌細胞中藉加強c-myc 的功能可提升細胞週期行進外,在胚胎幹細胞中HIF-2alpha更是直接調控Oct-4基因,暗示HIF-2alpha在維持幹細胞的特性及生長扮演重要角色。氯化亞鈷 (cobalt chloride, CoCl2) 為脯胺酸羥基化酵素抑制劑,常拿來作為缺氧模擬劑,短時間內可有效增加缺氧誘導性因子蛋白表現量。初步結果顯示在人類臍帶間質幹細胞中經CoCl2前處理後,達到抵抗過氧化氫所造成的細胞傷害。西方墨點法中也發現加有CoCl2的實驗組HIF-2alpha蛋白表現量明顯比控制組來的多;誘發之HIF-1alpha蛋白質表現量則較低。另外在低劑量CoCl2長時間處理後能使細胞保持比原有更高的存活率。本研究發現CoCl2在活體外具有增進臍帶間質幹細胞抵抗氧化壓力的潛力,以及對CoCl2的毒性具較高耐受性。
關鍵字:人類臍帶間質幹細胞、氯化亞鈷、過氧化氫

Human umbilical mensenchymal stem cells (hUMSCs) are characterized by a high self-renewal and a multi-lineage differentiation potential. Recent report indicated that MSCs exposed to hypoxic conditions exhibit greater colony-forming potential, prolonged proliferation, and greater chemotaxis. Upon exposure to hypoxic conditions, cells will be induced to express hypoxia inducible factors (HIFs) which regulate the expression of over 200 genes. HIF-2alpha has been shown to promote cell cycle progression by functional c-myc in hypoxic carcinoma cells and regulate OCT-4 in mouse ES cells, suggesting that HIF-2alpha is involved in the regulation of stem cell maintenance. Cobalt chloride (CoCl2) is a proline hydroxylase inhibitor, usually considered as a hypoxic mimetic reagent which can lead to accumulation HIF protein efficiently after short period. Our preliminary data show that hUMSCs treated with CoCl2 could prevent cells damage from H2O2 assaulting. Western blot data indicate that after treated with CoCl2 , the expression of HIF-2alpha in hUMSCs was increased time dependently. In the meantime inducible HIF-1alpha expression was detected at much lower level. Treated with lower dose of CoCl2 in a longer term was found viability of hUMSCs significantly remained high. We observed that hUMSCs was less labile than BEAS-2B to toxicity of CoCl2 which was also shown alike to protect the cells from H2O2 toxicity at higher doses in shorter term.

Keyword: Human umbilical mensenchymal stem cells、Cobalt chloride、Hydrogen peroxide

圖目錄..................................................III
表目錄..................................................IV
縮寫對照表...............................................V
中文摘要.................................................VI
Abstract.................................................VII
第一章、緒論..............................................1
第一節 幹細胞.............................................1
第二節 人類臍帶間質幹細胞...................................3
第三節 氧化壓力............................................4
第四節 氯化亞鈷之作用.......................................7
第三章、材料與方法.........................................11
第一節 實驗材料與儀器......................................11
第二節 實驗用溶液配方......................................14
第三節 實驗方法...........................................15
第四章、實驗結果..........................................26
第一節 CoCl2與H2O2對hUMSCs之影響..........................26
第二節 用BEAS-2B細胞株驗證微陣列晶片分析之基因表現差異........28
第五章、討 論.............................................30
附 圖....................................................35
參 考 文 獻...............................................54

1.Kuijk, E.W., et al., The different shades of mammalian pluripotent stem cells. Hum Reprod Update, 2011. 17(2): p. 254-71.
2.Watt, F.M. and B.L. Hogan, Out of Eden: stem cells and their niches. Science, 2000. 287(5457): p. 1427-30.
3.Wagers, A.J. and I.L. Weissman, Plasticity of adult stem cells. Cell, 2004. 116(5): p. 639-48.
4.Wobus, A.M. and K.R. Boheler, Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev, 2005. 85(2): p. 635-78.
5.Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
6.Friedenstein, A.J., et al., Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation, 1974. 17(4): p. 331-40.
7.Korbling, M., et al., Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med, 2002. 346(10): p. 738-46.
8.Tian, X., et al., [Isolation of multipotent mesenchymal stem cells from the tissue of umbilical cord for osteoblasts and adipocytes differentiation]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2008. 39(1): p. 26-9.
9.Gage, F.H., Mammalian neural stem cells. Science, 2000. 287(5457): p. 1433-8.
10.Miura, M., et al., SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A, 2003. 100(10): p. 5807-12.
11.Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002. 13(12): p. 4279-95.
12.Jackson, K.A., T. Mi, and M.A. Goodell, Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci U S A, 1999. 96(25): p. 14482-6.
13.Watt, F.M., Stem cell fate and patterning in mammalian epidermis. Curr Opin Genet Dev, 2001. 11(4): p. 410-7.
14.Daniels, J.T., et al., Corneal stem cells in review. Wound Repair Regen, 2001. 9(6): p. 483-94.
15.Kim, J.H., et al., Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature, 2002. 418(6893): p. 50-6.
16.Ikehara, S., Treatment of autoimmune diseases by hematopoietic stem cell transplantation. Exp Hematol, 2001. 29(6): p. 661-9.
17.Chen, J., et al., Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke, 2001. 32(11): p. 2682-8.
18.Tse, H.F., et al., Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet, 2003. 361(9351): p. 47-9.
19.Sartipy, P., et al., The application of human embryonic stem cell technologies to drug discovery. Drug Discov Today, 2007. 12(17-18): p. 688-99.
20.Caplan, A.I., Mesenchymal stem cells. J Orthop Res, 1991. 9(5): p. 641-50.
21.Caplan, A.I. and S.P. Bruder, Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med, 2001. 7(6): p. 259-64.
22.Fukuchi, Y., et al., Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells, 2004. 22(5): p. 649-58.
23.Alviano, F., et al., Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol, 2007. 7: p. 11.
24.Secco, M., et al., Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells, 2008. 26(1): p. 146-50.
25.Guillot, P.V., et al., Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells, 2007. 25(3): p. 646-54.
26.Gotherstrom, C., et al., Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant, 2003. 32(3): p. 265-72.
27.Gotherstrom, C., et al., Difference in gene expression between human fetal liver and adult bone marrow mesenchymal stem cells. Haematologica, 2005. 90(8): p. 1017-26.
28.Sobolewski, K., et al., Collagen and glycosaminoglycans of Wharton's jelly. Biol Neonate, 1997. 71(1): p. 11-21.
29.Nilsson, S.K., et al., Hyaluronan is synthesized by primitive hemopoietic cells, participates in their lodgment at the endosteum following transplantation, and is involved in the regulation of their proliferation and differentiation in vitro. Blood, 2003. 101(3): p. 856-62.
30.Mitchell, K.E., et al., Matrix cells from Wharton's jelly form neurons and glia. Stem Cells, 2003. 21(1): p. 50-60.
31.Chandra, J., A. Samali, and S. Orrenius, Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med, 2000. 29(3-4): p. 323-33.
32.Jiang, F., Y. Zhang, and G.J. Dusting, NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev, 2011. 63(1): p. 218-42.
33.Sauer, H., et al., Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett, 2000. 476(3): p. 218-23.
34.Tandara, A.A. and T.A. Mustoe, Oxygen in wound healing--more than a nutrient. World J Surg, 2004. 28(3): p. 294-300.
35.Martindale, J.L. and N.J. Holbrook, Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol, 2002. 192(1): p. 1-15.
36.Kurata, S., Selective activation of p38 MAPK cascade and mitotic arrest caused by low level oxidative stress. J Biol Chem, 2000. 275(31): p. 23413-6.
37.Xia, Z., et al., Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 1995. 270(5240): p. 1326-31.
38.Ito, K., et al., Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med, 2006. 12(4): p. 446-51.
39.Nakata, S., et al., NF-kappaB family proteins participate in multiple steps of hematopoiesis through elimination of reactive oxygen species. J Biol Chem, 2004. 279(53): p. 55578-86.
40.Harrison, J.S., et al., Oxygen saturation in the bone marrow of healthy volunteers. Blood, 2002. 99(1): p. 394.
41.Lavrentieva, A., et al., Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Commun Signal, 2010. 8: p. 18.
42.McAdams, T.A., W.M. Miller, and E.T. Papoutsakis, Hematopoietic cell culture therapies (Part I): Cell culture considerations. Trends Biotechnol, 1996. 14(9): p. 341-9.
43.Koller, M.R., et al., Reduced oxygen tension increases hematopoiesis in long-term culture of human stem and progenitor cells from cord blood and bone marrow. Exp Hematol, 1992. 20(2): p. 264-70.
44.Fehrer, C., et al., Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell, 2007. 6(6): p. 745-57.
45.Annabi, B., et al., Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem Cells, 2003. 21(3): p. 337-47.
46.Potier, E., et al., Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone, 2007. 40(4): p. 1078-87.
47.Holzwarth, C., et al., Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol, 2010. 11: p. 11.
48.Fischer, B. and B.D. Bavister, Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil, 1993. 99(2): p. 673-9.
49.Semenza, G.L., HIF-1 and human disease: one highly involved factor. Genes Dev, 2000. 14(16): p. 1983-91.
50.Semenza, G.L., Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003. 3(10): p. 721-32.
51.Semenza, G.L. and G.L. Wang, A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol, 1992. 12(12): p. 5447-54.
52.Rankin, E.B., et al., Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest, 2007. 117(4): p. 1068-77.
53.Gordan, J.D., et al., HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell, 2007. 11(4): p. 335-47.
54.Hu, C.J., et al., Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells. Mol Cell Biol, 2006. 26(9): p. 3514-26.
55.Cameron, C.M., et al., Activation of hypoxic response in human embryonic stem cell-derived embryoid bodies. Exp Biol Med (Maywood), 2008. 233(8): p. 1044-57.
56.Covello, K.L., et al., HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev, 2006. 20(5): p. 557-70.
57.Hirsila, M., et al., Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J, 2005. 19(10): p. 1308-10.
58.Yao, S.Y., M. Soutto, and S. Sriram, Preconditioning with cobalt chloride or desferrioxamine protects oligodendrocyte cell line (MO3.13) from tumor necrosis factor-alpha-mediated cell death. J Neurosci Res, 2008. 86(11): p. 2403-13.
59.Yook, Y.J., et al., Induction of hypoxia-inducible factor-1alpha inhibits drug-induced apoptosis in the human leukemic cell line HL-60. Korean J Hematol, 2010. 45(3): p. 158-63.
60.Liu, H., et al., Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1alpha in MSCs. Biochem Biophys Res Commun, 2010. 401(4): p. 509-15.
61.Pacary, E., et al., Synergistic effects of CoCl(2) and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells. J Cell Sci, 2006. 119(Pt 13): p. 2667-78.
62.Seshareddy, K., D. Troyer, and M.L. Weiss, Method to isolate mesenchymal-like cells from Wharton's Jelly of umbilical cord. Methods Cell Biol, 2008. 86: p. 101-19.
63.Twentyman, P.R. and M. Luscombe, A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer, 1987. 56(3): p. 279-85.
64.Kobayashi, H. and P.C. Lin, Molecular characterization of IL-32 in human endothelial cells. Cytokine, 2009. 46(3): p. 351-8.
65.Ma, Y., et al., Glucose-regulated protein 78 is an intracellular antiviral factor against hepatitis B virus. Mol Cell Proteomics, 2009. 8(11): p. 2582-94.
66.Yu, L.F., et al., XAF1 mediates apoptosis through an extracellular signal-regulated kinase pathway in colon cancer. Cancer, 2007. 109(10): p. 1996-2003.
67.Chen, B., et al., Xeno-free culture of human spermatogonial stem cells supported by human embryonic stem cell-derived fibroblast-like cells. Asian J Androl, 2009. 11(5): p. 557-65.
68.Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-7.
69.Rosova, I., et al., Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells, 2008. 26(8): p. 2173-82.
70.Zeng, H.L., et al., Hypoxia-mimetic agents inhibit proliferation and alter the morphology of human umbilical cord-derived mesenchymal stem cells. BMC Cell Biol, 2011. 12: p. 32.
71.Flippo, T.S. and W.D. Holder, Jr., Neurologic degeneration associated with nitrous oxide anesthesia in patients with vitamin B12 deficiency. Arch Surg, 1993. 128(12): p. 1391-5.
72.Isaacs, A. and J. Lindenmann, Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci, 1957. 147(927): p. 258-67.
73.Samuel, C.E., Antiviral actions of interferons. Clin Microbiol Rev, 2001. 14(4): p. 778-809, table of contents.
74.Plenchette, S., et al., The role of XAF1 in cancer. Curr Opin Investig Drugs, 2007. 8(6): p. 469-76.
75.Leaman, D.W., et al., Identification of X-linked inhibitor of apoptosis-associated factor-1 as an interferon-stimulated gene that augments TRAIL Apo2L-induced apoptosis. J Biol Chem, 2002. 277(32): p. 28504-11.
76.Lee, M.G., et al., Promoter CpG hypermethylation and downregulation of XAF1 expression in human urogenital malignancies: implication for attenuated p53 response to apoptotic stresses. Oncogene, 2006. 25(42): p. 5807-22.
77.Zou, B., et al., XIAP-associated factor 1 (XAF1), a novel target of p53, enhances p53-mediated apoptosis via post-translational modification. Mol Carcinog, 2012. 51(5): p. 422-32.
78.Nishida, A., et al., Interleukin-32 expression in the pancreas. J Biol Chem, 2009. 284(26): p. 17868-76.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top