跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾子豪
研究生(外文):Tseng, Tzu-Hao
論文名稱:LED光照射對手術誘導骨關節炎大鼠軟骨新陳代謝的影響
論文名稱(外文):Effects of LED Light Irradiation on Rats Surgical-induced Osteoarthritis Cartilage Metabolism
指導教授:林清亮林清亮引用關係史中
指導教授(外文):Lin, Chin-LiangShih, Chung
口試委員:謝耀東史中林清亮
口試委員(外文):Hsieh, Yao-TungShih, ChungLin, Chin-Liang
口試日期:2012-05-24
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物及解剖學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:89
中文關鍵詞:發光二極體骨關節炎軟骨
外文關鍵詞:light-emitting diodeLEDosteoarthritis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
骨關節炎 (osteoarthritis, OA)是一種複雜的退化性疾病,關節軟骨和胞
外基質會產生變化,這些變化包括軟骨細胞流失、軟骨纖維化、軟骨透明
化、軟骨厚度減少、軟骨下骨硬化或產生新生的骨刺。治療骨關節炎的方
式包括給予抗發炎的藥物、手術治療或物理治療的方式例如光療法。近年
來有些對於發光二極體 (light-emitting diode, LED)的研究,發現LED 類似
於雷射具有促進組織修復與細胞增生,因此本次實驗想探討LED 光照射對
手術誘導造成的骨關節炎其軟骨新陳代謝的影響。本實驗選用58 隻10 週
大的Sprague-Dawley 公鼠,分成4 個實驗組與基準組,實驗時間分為3 週
與6 週接受LED 光的照射。在動物犧牲的前8 天與前1 天用腹腔注射的方
式打入骨螢光標示劑,動物犧牲後進行灌流並收集雙腿的股骨與脛骨,股
骨使用脫鈣的方法而脛骨使用非脫鈣的方法,並進行組織切片與組織的形
態測量,測量關節軟骨與軟骨下骨其結構發生的變化。

結果:在3週時照射組的縱向生長速率、生長板厚度、生長板軟骨細胞
平均高度、關節軟骨厚度、關節軟骨的軟骨細胞高度、鈣化軟骨面積與破
骨細胞數量皆明顯高於假照射組。而在6週時,發現手術照射組的關節軟骨
表層不規則化的比例明顯比手術假照射組還低。顯示LED光照射對介入模
式退化性關節炎大鼠軟骨之代謝,產生組織特性之影響。
Osteoarthritis is a complex degenerative disease, that disrupts the articular
cartilage and collagenous matrix of the joint, includes chondrocytes loss,
cartilage fibrillation, cartilage hyalinization, total cartilage thickness loss,
subchondral bone sclerosis, bone cysts and spur formation. The treatment of
osteoarthritis includes anti-inflammatory drugs, surgical treatment or physical
therapy such as phototherapy. Recent studies about light emitting diode light
(LED) showed that LED light irradiation has some effects similar to laser
irradiation on tissue such as enhanced fibroblasts proliferation and tissue repair.
It is not clear about the effects to LED irradiation on cartilage metabolism.
Therefore, the aim of this study was explore the effects of LED light irradiation
on surgical induced osteoarthritis cartilage metabolism. 58 male SD rats of 10
weeks old were divided into four experiment groups and baseline group. LED
irradiation duration was 3 and 6 weeks. Experimental OA model of rats was
induced with transverse meniscus ligament transection surgery in trauma groups.
In sham groups, only incision on the skin was made. All rats were
administered bone markers (calcein) by intraperitoneal (IP) injections, 8 and 1
day before sacrifice. After sacrifice, femur and tibia were collected. Femur and
tibia was further processed with decalcified and undecalcified method
respectively. Histological observation and measurement of the articular cartilage
and subchondral bone was done by histomorphometry.

Results: The histological results in 3 weeks groups, showed that LED light
irradiation enhanced cartilage metabolism parameters, such as longitudinal
growth rate, growth plate thickness, chondrocyte mean height, articular cartilage
thickness, calcified cartilage volume and osteoclasts number. In 6 weeks groups,
the articular cartilage Area superficial flaking ratio of trauma irradiation group
was lower than that of trauma control group.

Conclusion: Irradiation with 630 nm wavelength LED light, on OA rats
enhanced chondrocytes proliferation and increased chondrocyte mean height,
growth plate thickness, articular cartilage thickness and calcified cartilage
volume, osteoclasts number in the subchondral bone to cope with the
inflammatory process shown in the experimental induced OA model.
目錄………………………………………………………………………………I
表目錄………………………………………………………………………….IV
圖目錄………………………………………………………………………….VI
中文摘要……………………………………………………………………...…1
英文摘要……………………………………………………………………..….2
第一章 緒言……………………………………………………………...……3
第一節 軟骨構造……………………………………………………………3
壹、軟骨組織的構造………………………………………………………..3
貳、軟骨的發育與生長……………………………………………….…….4
参、關節軟骨…………………………………………………..……………6
肆、骨關節炎…………………………………………………………..……7
伍、誘導實驗性的骨關節炎……………………………………..………..10
陸、骨關節炎的治療方式…………………………………………………13
第二節組織接受光照射後的反應……………………………………..…16
壹、組織的光學特性………………………………………………………16
貳、光子生物效應…………………………………………………………16
第三節雷射應用於組織…………………………………………………..21
第四節發光二極體 (light-emitting diode, LED)………………………...23
第五節發光二極體的應用………………………………………………..25
第六節 研究目的…………………………………………………………..28
第二章 實驗設計與材料方法…………………………………….…………29
第一節 實驗材料……………………………………………………….…29
壹、 實驗動物……………………………………………………...……29
貳、 發光二極體………………………………………………………...29
第二節 實驗設計與方法………………………………………………….30
壹、 實驗設計…………………………………………………………...30
貳、 動物手術…………………………………………………………...31
參、 LED 光的照射……...…........…………………………………...…31
肆、 骨螢光標示劑……………………………………………………...32
伍、 動物灌流……………………………………………………...……32
陸、 非脫鈣標本的製作………………………………………...………33
柒、 脫鈣標本的製作……………………………………...……………35
捌、 骨組織形態測量學……………………………………...…………36
玖、 統計分析……………………………………………...……………39
第三章 結果………………………………………………….………………40
第四章 討論………………………………………………….………………45
第五章 結論……………………………………………….…………………53
第六章參考文獻………………………………………….…………………55
Afzal S and Khanam A (2011). Serum estrogen and interleukin-6 levels in postmenopausal female osteoarthritis patients. Pak J Pharm Sci 24(2): 217-219.

Al-Watban FA and Zhang XY (1997). Comparison of wound healing process using Argon and Krypton lasers. J Clin Laser Med Surg 15(5): 209-215.

Almeida-Lopes L, Rigau J, Zangaro RA, Guidugli-Neto J and Jaeger MM (2001). Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29(2): 179-184.

Appleton CT, McErlain DD, Pitelka V, Schwartz N, Bernier SM, Henry JL, Holdsworth DW and Beier F (2007). Forced mobilization accelerates pathogenesis: characterization of a preclinical surgical model of osteoarthritis. Arthritis Res Ther 9(1): R13.

Ayhan M, Deren O, Gorgu M, Erdogan B and Dursun A (2002). Cartilage shaping with the Er:YAG laser: an in vivo experimental study. Ann Plast Surg 49(5): 527-531.

Baker JF, Walsh PM, Byrne DP and Mulhall KJ (2012). Pravastatin suppresses matrix metalloproteinase expression and activity in human articular chondrocytes stimulated by interleukin-1beta. J Orthop Traumatol.

Bendele AM (2001). Animal models of osteoarthritis. J Musculoskelet Neuronal Interact 1(4): 363-376.

Bendele AM (2002). Animal models of osteoarthritis in an era of molecular biology. J Musculoskelet Neuronal Interact 2(6): 501-503.

Bugbee WD (2002). Fresh osteochondral allografts. J Knee Surg 15(3): 191-195.

Butow RA and Avadhani NG (2004). Mitochondrial signaling: the retrograde response. Mol Cell 14(1): 1-15.

Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ and Camello PJ (2006). Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol 291(5): C1082-1088.

Chen CG, Thuillier D, Chin EN and Alliston T (2012). Chondrocyte-intrinsic Smad3 represses Runx2-inducible MMP-13 expression to maintain articular cartilage and prevent osteoarthritis. Arthritis Rheum.
Conlan MJ, Rapley JW and Cobb CM (1996). Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 23(5): 492-496.

Dall Agnol MA, Nicolau RA, de Lima CJ and Munin E (2009). Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats. Lasers Med Sci 24(6): 909-916.

Daniel M, Moore S and Kestens Y (2008). Framing the biosocial pathways underlying associations between place and cardiometabolic disease. Health Place 14(2): 117-132.

Dejica VM, Mort JS, Laverty S, Antoniou J, Zukor DJ, Tanzer M and Poole AR (2012). Increased type II collagen cleavage by cathepsin K and collagenase activities with aging and osteoarthritis in human articular cartilage. Arthritis Res Ther 14(3): R113.

DeLand MM, Weiss RA, McDaniel DH and Geronemus RG (2007). Treatment of radiation-induced dermatitis with light-emitting diode (LED) photomodulation. Lasers Surg Med 39(2): 164-168.

Eswaramoorthy R, Chang CC, Wu SC, Wang GJ, Chang JK and Ho ML (2012). Sustained release of PTH(1-34) from PLGA microspheres suppresses osteoarthritis progression in rats. Acta Biomater 8(6): 2254-2262.

Hamajima S, Hiratsuka K, Kiyama-Kishikawa M, Tagawa T, Kawahara M, Ohta M, Sasahara H and Abiko Y (2003). Effect of low-level laser irradiation on osteoglycin gene expression in osteoblasts. Lasers Med Sci 18(2): 78-82.

Hanna FS, Wluka AE, Bell RJ, Davis SR and Cicuttini FM (2004). Osteoarthritis and the postmenopausal woman: Epidemiological, magnetic resonance imaging, and radiological findings. Semin Arthritis Rheum 34(3): 631-636.

Hawkins D and Abrahamse H (2006). Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 24(6): 705-714.

Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA and Duong le T (2006). Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone 38(2): 234-243.

Hodgson BD, Margolis DM, Salzman DE, Eastwood D, Tarima S, Williams LD, Sande JE, Vaughan WP and Whelan HT (2012). Amelioration of oral mucositis pain by NASA near-infrared light-emitting diodes in bone marrow transplant patients. Support Care Cancer 20(7): 1405-1415.

Hou JF, Zhang H, Yuan X, Li J, Wei YJ and Hu SS (2008). In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40(10): 726-733.

Hu WP, Wang JJ, Yu CL, Lan CC, Chen GS and Yu HS (2007). Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Invest Dermatol 127(8): 2048-2057.

Karu TI (2008). Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84(5): 1091-1099.

Karu TI (2010). Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 62(8): 607-610.

Karu TI, Tiphlova OA, Matveyets Yu A, Yartsev AP and Letokhov VS (1991). Comparison of the effects of visible femtosecond laser pulses and continuous wave laser radiation of low average intensity on the clonogenicity of Escherichia coli. J Photochem Photobiol B 10(4): 339-344.

Khoury JG and Goldman MP (2008). Use of light-emitting diode photomodulation to reduce erythema and discomfort after intense pulsed light treatment of photodamage. J Cosmet Dermatol 7(1): 30-34.

Kojima T and Ishiguro N (2012). [Development of biomarker for detecting cartilage degradation in osteoarthritis]. Nihon Rinsho 70(5): 796-801.

Kudin AP, Debska-Vielhaber G and Kunz WS (2005). Characterization of superoxide production sites in isolated rat brain and skeletal muscle mitochondria. Biomed Pharmacother 59(4): 163-168.

Lim W, Lee S, Kim I, Chung M, Kim M, Lim H, Park J, Kim O and Choi H (2007). The anti-inflammatory mechanism of 635 nm light-emitting-diode irradiation compared with existing COX inhibitors. Lasers Surg Med 39(7): 614-621.

Lin Y-S, Huang M-H, Chai C-Y and Yang R-C (2004). Effects of Helium-Neon Laser on Levels of Stress Protein and Arthritic Histopathology in Experimental Osteoarthritis. American Journal of Physical Medicine & Rehabilitation 83(10): 758-765.

Lin YS, Huang MH, Chai CY and Yang RC (2004). Effects of helium-neon laser on levels of stress protein and arthritic histopathology in experimental osteoarthritis. Am J Phys Med Rehabil 83(10): 758-765.

Lohmander LS (2000). What can we do about osteoarthritis? Arthritis Res 2(2): 95-100.

Lowe AS, Walker MD, O'Byrne M, Baxter GD and Hirst DG (1998). Effect of low intensity monochromatic light therapy (890 nm) on a radiation-impaired, wound-healing model in murine skin. Lasers Surg Med 23(5): 291-298.

Majaron B, Srinivas SM, Huang H and Nelson JS (2000). Deep coagulation of dermal collagen with repetitive Er:YAG laser irradiation. Lasers Surg Med 26(2): 215-222.

Martin JA and Buckwalter JA (2001). Roles of articular cartilage aging and chondrocyte senescence in the pathogenesis of osteoarthritis. Iowa Orthop J 21: 1-7.

Martin JA and Buckwalter JA (2002). Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology 3(5): 257-264.

Masouros SD, McDermott ID, Amis AA and Bull AM (2008). Biomechanics of the meniscus-meniscal ligament construct of the knee. Knee Surg Sports Traumatol Arthrosc 16(12): 1121-1132.

Messner K and Gao J (1998). The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat 193 ( Pt 2): 161-178.

Mester E, Mester AF and Mester A (1985). The biomedical effects of laser application. Lasers Surg Med 5(1): 31-39.
Miller M and Truhe T (1993). Lasers in dentistry: an overview. J Am Dent Assoc 124(2): 32-35.

Nicola RA, Jorgetti V, Rigau J, Pacheco MT, dos Reis LM and Zangaro RA (2003). Effect of low-power GaAlAs laser (660 nm) on bone structure and cell activity: an experimental animal study. Lasers Med Sci 18(2): 89-94.

Oettmeier R, Abendroth K and Oettmeier S (1989). Analyses of the tidemark on human femoral heads. II. Tidemark changes in osteoarthrosis--a histological and histomorphometric study in non-decalcified preparations. Acta Morphol Hung 37(3-4): 169-180.

Ohtori S, Orita S, Yamashita M, Ishikawa T, Ito T, Shigemura T, Nishiyama H, Konno S, Ohta H, Takaso M, Inoue G, Eguchi Y,
Ochiai N, Kishida S, Kuniyoshi K, Aoki Y, Arai G, Miyagi M, Kamoda H, Suzkuki M, Nakamura J, Furuya T, Kubota G, Sakuma Y, Oikawa Y, Suzuki M, Sasho T, Nakagawa K, Toyone T and Takahashi K (2012). Existence of a neuropathic pain component in patients with osteoarthritis of the knee. Yonsei Med J 53(4): 801-805.

Pacella CM, Bizzarri G, Francica G, Bianchini A, De Nuntis S, Pacella S, Crescenzi A, Taccogna S, Forlini G, Rossi Z, Osborn J and Stasi R (2005). Percutaneous Laser Ablation in the Treatment of Hepatocellular Carcinoma with Small Tumors: Analysis of Factors Affecting the Achievement of Tumor Necrosis. Journal of Vascular and Interventional Radiology 16(11): 1447-1457.

Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM and Recker RR (1987). Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2(6): 595-610.

Park YS, Lim SW, Lee IH, Lee TJ, Kim JS and Han JS (2007). Intra-articular injection of a nutritive mixture solution protects articular cartilage from osteoarthritic progression induced by anterior cruciate ligament transection in mature rabbits: a randomized controlled trial. Arthritis Res Ther 9(1): R8.

Passarella S, Marra E, Doonan S and Quagliariello E (1983). Uptake of malate dehydrogenase into mitochondria in vitro. Some characteristics of the process. Biochem J 210(1): 207-214.

Passarella S, Ostuni A, Atlante A and Quagliariello E (1988). Increase in the ADP/ATP exchange in rat liver mitochondria irradiated in vitro by helium-neon laser. Biochem Biophys Res Commun 156(2): 978-986.

Pastoureau P, Leduc S, Chomel A and De Ceuninck F (2003). Quantitative assessment of articular cartilage and subchondral bone histology in the meniscectomized guinea pig model of osteoarthritis. Osteoarthritis Cartilage 11(6): 412-423.

Pelletier JP, Boileau C, Brunet J, Boily M, Lajeunesse D, Reboul P, Laufer S and Martel-Pelletier J (2004). The inhibition of subchondral bone resorption in the early phase of experimental dog osteoarthritis by licofelone is associated with a reduction in the synthesis of MMP-13 and cathepsin K. Bone 34(3): 527-538.

Petty CA and Lubowitz JH (2012). Does arthroscopic partial meniscectomy always cause arthritis? Sports Med Arthrosc 20(2): 58-61.

Philip V, Harris J, Adams R, Nguyen D, Spiers J, Baudry J, Howell EE and Hinde RJ (2011). A survey of aspartate-phenylalanine and glutamate-phenylalanine interactions in the protein data bank: searching for anion-pi pairs. Biochemistry 50(14): 2939-2950.

Pires Oliveira DA, de Oliveira RF, Zangaro RA and Soares CP (2008). Evaluation of low-level laser therapy of osteoblastic cells. Photomed Laser Surg 26(4): 401-404.

Poynton A, Moran CJ, Moran R and O'Brien M (2011). The meniscofemoral ligaments influence lateral meniscal motion at the human knee joint. Arthroscopy 27(3): 365-371.

Radin EL and Rose RM (1986). Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res(213): 34-40.

Renno AC, McDonnell PA, Parizotto NA and Laakso EL (2007). The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg 25(4): 275-280.

Richette P, Corvol M and Bardin T (2003). Estrogens, cartilage, and osteoarthritis. Joint Bone Spine 70(4): 257-262.
Schroeder P, Pohl C, Calles C, Marks C, Wild S and Krutmann J (2007). Cellular response to infrared radiation involves retrograde mitochondrial signaling. Free Radic Biol Med 43(1): 128-135.

Schultz RJ, Krishnamurthy S, Thelmo W, Rodriguez JE and Harvey G (1985). Effects of varying intensities of laser energy on articular cartilage: a preliminary study. Lasers Surg Med 5(6): 577-588.

Sherman AL, Ojeda-Correal G and Mena J (2012). Use of glucosamine and chondroitin in persons with osteoarthritis. PM R 4(5 Suppl): S110-116.

Sniekers YH, van Osch GJ, Jahr H, Weinans H and van Leeuwen JP (2010). Estrogen modulates iodoacetate-induced gene expression in bovine cartilage explants. J Orthop Res 28(5): 607-615.

Stein A, Benayahu D, Maltz L and Oron U (2005). Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23(2): 161-166.

Takahashi T, Naito S, Onoda J, Yamauchi A, Nakamura E, Kishino J, Kawai T, Matsukawa S, Toyosaki-Maeda T, Tanimura M, Fukui N, Numata Y and Yamane S (2012). Development of a novel immunoassay for the measurement of type II collagen neoepitope generated by collagenase cleavage. Clin Chim Acta.

To N, Curtiss S, Neu CP, Salgado CJ and Jamali AA (2011). Rabbit trochlear model of osteochondral allograft transplantation. Comp Med 61(5): 427-435.

Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA and Cambier DC (2003). Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 18(2): 95-99.

Whelan HT, Smits RL, Jr., Buchman EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H, Ignatius R, Martin T, Cwiklinski J, Philippi AF, Graf WR, Hodgson B, Gould L, Kane M, Chen G and Caviness J (2001). Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19(6): 305-314.

Yin J, Yang Z, Cao YP and Ge ZG (2011). Characterization of human primary chondrocytes of osteoarthritic cartilage at varying severity. Chin Med J (Engl) 124(24): 4245-4253.

Yu HS, Chang KL, Yu CL, Chen JW and Chen GS (1996). Low-energy helium-neon laser irradiation stimulates interleukin-1 alpha and interleukin-8 release from cultured human keratinocytes. J Invest Dermatol 107(4): 593-596.

Zhang DX and Gutterman DD (2007). Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292(5): H2023-2031.

Zhang L, Chen BC, Ma SY, Zhang WM, Wang J and Su H (2011). [An experimental study on the basic fibroblast growth factor slow-releasing microsphere for knee osteoarthritis in the rabbit]. Zhonghua Wai Ke Za Zhi 49(9): 830-833.

Michael H 原著,王長君等編譯;ROSS 組織學,第一版,合記圖書版
社,台北市,2006 年

馮芳蘋;利用細胞培養的方式觀察LED光處理後破骨細胞的反應,國防醫學院 生物及解剖學研究所碩士論文,2007年

楊智盛;發光二極體光照射對大鼠脛骨骨缺損癒合的影響,國防醫學院
生物及解剖學研究所碩士論文,2009 年

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊